MySQL Cookbook
By Paul DuBois

LT

Ripped by: Lilmeanman

MySQL Cookbook provides a unique problem-and-solution format that offers practical
examples for everyday programming dilemmas. For every problem addressed in the
book, there's a worked-out solution or "recipe"--short, focused pieces of code that you
can insert directly into your applications. More than a collection of cut-and-paste
code, this book explanation how and why the code works, so you can learn to adapt
the techniques to similar situations.

Digitally signed by Lilmeanman
. DN: CN = Lilmeanman, C=US, O =
LI I I I l ean I I l an Lilmeanman UNItd, OU = Lilmeanman
UNItd
Date: 2004.09.02 04:53:32 -06'00'

Preface

The MySQL database management system has become quite popular in recent years. This has been true especially
in the Linux and open source communities, but MySQL's presence in the commercial sector now is increasing as
well. 1t is well liked for several reasons: MySQL is fast, and it's easy to set up, use, and administrate. MySQL runs
under many varieties of Unix and Windows, and MySQL-based programs can be written in many languages.
MySQL is especially heavily used in combination with a web server for constructing database-backed web sites
that involve dynamic content generation.

With MySQL's rise in popularity comes the need to address the questions posed by its users about how to solve
specific problems. That is the purpose of MySQL Cookbook. It's designed to serve as a handy resource to which
you can turn when you need quick solutions or techniques for attacking particular types of questions that come up
when you use MySQL. Naturally, because it's a cookbook, it contains recipes: straightforward instructions you can
follow rather than develop your own code from scratch. It's written using a problem-and-solution format designed
to be extremely practical and to make the contents easy to read and assimilate. It contains many short sections,
each describing how to write a query, apply a technique, or develop a script to solve a problem of limited and
specific scope. This book doesn't attempt to develop full-fledged applications. Instead, it's intended to assist you in
developing such applications yourself by helping you get past problems that have you stumped.

For example, a common question is, "How can | deal with quotes and special characters in data values when I'm
writing queries?" That's not difficult, but figuring out how to do it is frustrating when you're not sure where to
start. This book demonstrates what to do; it shows you where to begin and how to proceed from there. This
knowledge will serve you repeatedly, because after you see what's involved, you'll be able to apply the technique
to any kind of data, such as text, images, sound or video clips, news articles, compressed files, PDF files, or word
processing documents. Another common question is, "Can | access tables from two databases at the same time?"
The answer is "Yes," and it's easy to do because it's just a matter of knowing the proper SQL syntax. But it's hard
to do until you see how; this book will show you. Other things that you'll learn from this book include:

e How to use SQL to select, sort, and summarize records.

e How to find matches or mismatches between records in two tables.

e How to perform a transaction.

« How to determine intervals between dates or times, including age calculations.

e How to remove duplicate records.

e How to store images into MySQL and retrieve them for display in web pages.

e How to convert the legal values of an ENUM column into radio buttons in a web page, or the values of a SET
column into checkboxes.

e How to get LOAD DATA to read your datafiles properly, or find out which values in the file are bad.

e How to use pattern matching techniques to cope with mismatches between the cCyy-mv-DD date format that
MySQL uses and dates in your datafiles.

e How to copy a table or a database to another server.

e How to resequence a sequence number column, and why you really don't want to.

One part of knowing how to use MySQL is understanding how to communicate with the server—that is, how to
use SQL, the language through which queries are formulated. Therefore, one major emphasis of this book is on
using SQL to formulate queries that answer particular kinds of questions. One helpful tool for learning and using
SQL is the mysql client program that is included in MySQL distributions. By using this client interactively, you

can send SQL statements to the server and see the results. This is extremely useful because it provides a direct
interface to SQL. The mysqgl client is so useful, in fact, that the entire first chapter is devoted to it.

But the ability to issue SQL queries alone is not enough. Information extracted from a database often needs to be
processed further or presented in a particular way to be useful. What if you have queries with complex
interrelationships, such as when you need to use the results of one query as the basis for others? SQL by itself has
little facility for making these kinds of choices, which makes it difficult to use decision-based logic to determine
which queries to execute. Or what if you need to generate a specialized report with very specific formatting
requirements? This too is difficult to achieve using just SQL. These problems bring us to the other major emphasis
of the book—how to write programs that interact with the MySQL server through an application programming
interface (API). When you know how to use MySQL from within the context of a programming language, you
gain the ability to exploit MySQL's capabilities in the following ways:

e You can remember the result from a query and use it at a later time.

e You can make decisions based on success or failure of a query, or on the content of the rows that are
returned. Difficulties in implementing control flow disappear when using an API because the host language
provides facilities for expressing decision-based logic: if-then-else constructs, while loops, subroutines, and
so forth.

e You can format and display query results however you like. If you're writing a command-line script, you
can generate plain text. If it's a web-based script, you can generate an HTML table. If it's an application that
extracts information for transfer to some other system, you might write a datafile expressed in XML.

When you combine SQL with a general purpose programming language and a MySQL client API, you have an
extremely flexible framework for issuing queries and processing their results. Programming languages increase
your expressive capabilities by giving you a great deal of additional power to perform complex database
operations. This doesn't mean this book is complicated, though. It keeps things simple, showing how to construct
small building blocks by using techniques that are easy to understand and easily mastered.

I'll leave it to you to combine these techniques within your own programs, which you can do to produce arbitrarily
complex applications. After all, the genetic code is based on only four nucleic acids, but these basic elements have
been combined to produce the astonishing array of biological life we see all around us. Similarly, there are only 12
notes in the scale, but in the hands of skilled composers, they can be interwoven to produce a rich and endless
variety of music. In the same way, when you take a set of simple recipes, add your imagination, and apply them to
the database programming problems you want to solve, you can produce that are perhaps not works of art, but
certainly applications that are useful and that will help you and others be more productive.

MySQL APIs Used in This Book

MySQL programming interfaces exist for many languages, including (in alphabetical order) C, C++, Eiffel, Java,
Pascal, Perl, PHP, Python, Ruby, Smalltalk, and Tcl.2 Given this fact, writing a MySQL cookbook presents an
author with something of a challenge. Clearly the book should provide recipes for doing many interesting and
useful things with MySQL, but which API or APIs should the book use? Showing an implementation of every
recipe in every language would result either in covering very few recipes or in a very, very large book! It would
also result in a lot of redundancy when implementations in different languages bear a strong resemblance to each
other. On the other hand, it's worthwhile taking advantage of multiple languages, because one language often will
be more suitable than another for solving a particular type of problem.

1 To see what APIs are currently available, visit the development portal at the MySQL web site, located at http://www.mysql.com/portal/development/html/.

To resolve this dilemma, I've picked a small number of APIs from among those that are available and used them to
write the recipes in this book. This limits its scope to a manageable number of APIs while allowing some latitude
to choose from among them. The primary APIs covered here are:

Perl

Using the DBI module and its MySQL-specific driver

PHP

Using its set of built-in MySQL support functions

Python

Using the DB-API module and its MySQL-specific driver

JavaTMm
Using a MySQL.-specific driver for the Java Database Connectivity (JDBC) interface

Why these languages? Perl and PHP were easy to pick. Perl is arguably the most widely used language on the
Web, and it became so based on certain strengths such as its text-processing capabilities. In particular, it's very
popular for writing MySQL programs. PHP also is widely deployed, and its use is increasing steadily. One of
PHP's strengths is the ease with which you can use it to access databases, making it a natural choice for MySQL
scripting. Python and Java are not as popular as Perl or PHP for MySQL programming, but each has significant
numbers of followers. In the Java community in particular, MySQL seems to be making strong inroads among
developers who use JavaServer Pages (JSP) technology to build database-backed web applications. (An anecdotal
observation: After | wrote MySQL (New Riders), Python and Java were the two languages not covered in that book
that readers most often said they would have liked to have seen addressed. So here they are!)

| believe these languages taken together reflect pretty well the majority of the existing user base of MySQL
programmers. If you prefer some language not shown here, you can still use this book, but be sure to pay careful
attention to Chapter 2, to familiarize yourself with the book's primary API languages. Knowing how database
operations are performed with the APIs used here will help you understand the recipes in later chapters so that you

can translate them into languages not discussed.

Who This Book Is For

This book should be useful for anybody who uses MySQL, ranging from novices who want to use a database for
personal reasons, to professional database and web developers. The book should also appeal to people who do not
now use MySQL, but would like to. For example, it should be useful to beginners who want to learn about
databases but realize that Oracle isn't the best choice for that.

If you're relatively new to MySQL, you'll probably find lots of ways to use it here that you hadn't thought of. If
you're more experienced, you'll probably be familiar with many of the problems addressed here, but you may not
have had to solve them before and should find the book a great timesaver; take advantage of the recipes given in
the book and use them in your own programs rather than figuring out how to write the code from scratch.

The book also can be useful for people who aren't even using MySQL. You might suppose that because this is a
MySQL cookbook and not a PostgreSQL cookbook or an InterBase cookbook that it won't apply to databases other
than MySQL. To some extent that's true, because some of the SQL constructs are MySQL-specific. On the other
hand, many of the queries are standard SQL that is portable to many other database engines, so you should be able
to use them with little or no modification. And several of our programming language interfaces provide database-
independent access methods; you use them the same way regardless of which database you're connecting to.

The material ranges from introductory to advanced, so if a recipe describes techniques that seem obvious to you,
skip it. Or if you find that you don't understand a recipe, it may be best to set it aside for a while and come back to
it later, perhaps after reading some of the preceding recipes.

More advanced readers may wonder on occasion why in a book on MySQL | sometimes provide explanatory
material on certain basic topics that are not directly MySQL-related, such as how to set environment variables. |
decided to do this based on my experience in helping novice MySQL users. One thing that makes MySQL
attractive is that it is easy to use, which makes it a popular choice for people without extensive background in
databases. However, many of these same people also tend to be thwarted by simple barriers to more effective use
of MySQL, as evidenced by the common question, "How can | avoid having to type the full pathname of mysqgl
each time | invoke it?" Experienced readers will recognize immediately that this is simply a matter of appropriately
setting the PATH environment variable to include the directory where mysql is installed. But other readers will not,
particularly Windows users who are used to dealing only with a graphical interface and, more recently, Mac OS X
users who find their familiar user interface now augmented by the powerful but sometimes mysterious command
line provided by the Terminal application. If you are in this situation, you'll find these more elementary sections
helpful in knocking down barriers that keep you from using MySQL more easily. If you're a more advanced user,
just skip over such sections.

What's in This Book

It's very likely when you use this book that you'll have an application in mind you're trying to develop but are not
sure how to implement certain pieces of it. In this case, you'll already know what type of problem you want to
solve, so you should search the table of contents or the index looking for a recipe that shows how to do what you
want. Ideally, the recipe will be just what you had in mind. Failing that, you should be able to find a recipe for a
similar problem that you can adapt to suit the issue at hand. (I try to explain the principles involved in developing
each technique so that you'll be able to modify it to fit the particular requirements of your own applications.)

Another way to approach this book is to just read through it with no specific problem in mind. This can help you
because it will give you a broader understanding of the things MySQL can do, so | recommend that you page
through the book occasionally. It's a more effective tool if you have a general familiarity with it and know the
kinds of problems it addresses. The following paragraphs summarize each chapter, to help give you an overview of
the book's contents.

Chapter 1, describes how to use the standard MySQL command-line client. mysqgl is often the first interface to
MySQL that people use, and it's important to know how to exploit its capabilities. This program allows you to
issue queries and see the results interactively, so it's good for quick experimentation. You can also use it in batch
mode to execute canned SQL scripts or send its output into other programs. In addition, the chapter discusses other
ways to use mysql, such as how to number output lines or make long lines more readable, how to generate various
output formats, and how to log mysqgl sessions.

Chapter 2, demonstrates the basic elements of MySQL programming in each API language: how to connect to the
server, issue queries, retrieve the results, and handle errors. It also discusses how to handle special characters and
NULL values in queries, how to write library files to encapsulate code for commonly used operations, and various

ways to gather the parameters needed for making connections to the server.

Chapter 3, covers several aspects of the SELECT statement, which is the primary vehicle for retrieving data from the
MySQL server: specifying which columns and rows you want to retrieve, performing comparisons, dealing with
NULL values, selecting one section of a query result, using temporary tables, and copying results into other tables.
Later chapters cover some of these topics in more detail, but this chapter provides an overview of the concepts on
which they depend. You should read it if you need some introductory background on record selection, for example,
if you don't yet know a lot about SQL.

Chapter 4, describes how to deal with string data. It addresses string comparisons, pattern matching, breaking apart
and combining strings, dealing with case-sensitivity issues, and performing FULLTEXT searches.

Chapter 5, shows how to work with temporal data. It describes MySQL's date format and how to display date
values in other formats. It also covers conversion between different temporal units, how to perform date arithmetic
to compute intervals or generate one date from another, leap-year calculations, and how to use MySQL's special
TIMESTAMP column type.

Chapter 6, describes how to put the rows of a query result in the order you want. This includes specifying the sort
direction, dealing with NULL values, accounting for string case sensitivity, and sorting by dates or partial column
values. It also provides examples that show how to sort special kinds of values, such as domain names, IP
numbers, and ENUM values.

Chapter 7, shows techniques that are useful for assessing the general characteristics of a set of data, such as how
many values it contains or what the minimum, maximum, or average values are.

Chapter 8, describes how to alter the structure of tables by adding, dropping, or modifying columns, and how to set
up indexes.

Chapter 9, discusses how to get information about the data a query returns, such as the number of rows or columns
in the result, or the name and type of each column. It also shows how to ask MySQL what databases and tables are
available or about the structure of a table and its columns.

Chapter 10, describes how to transfer information between MySQL and other programs. This includes how to
convert files from one format to another, extract or rearrange columns in datafiles, check and validate data, rewrite
values such as dates that often come in a variety of formats, and how to figure out which data values cause
problems when you load them into MySQL with LOAD DATA.

Chapter 11, discusses AUTO_INCREMENT columns, MySQL's mechanism for producing sequence numbers. It shows
how to generate new sequence values or determine the most recent value, how to resequence a column, how to
begin a sequence at a given value, and how to set up a table so that it can maintain multiple sequences at once. It
also shows how to use AUTO_INCREMENT values to maintain a master-detail relationship between tables, including
some of the pitfalls to avoid.

Chapter 12, shows how to perform joins, which are operations that combine rows in one table with those from
another. It demonstrates how to compare tables to find matches or mismatches, produce master-detail lists and
summaries, enumerate many-to-many relationships, and update or delete records in one table based on the contents
of another.

Chapter 13, illustrates how to produce descriptive statistics, frequency distributions, regressions, and correlations.
It also covers how to randomize a set of rows or pick a row at random from the set.

Chapter 14, discusses how to identify, count, and remove duplicate records—and how to prevent them from
occurring in the first place.

Chapter 15, shows how to handle multiple SQL statements that must execute together as a unit. It discusses how to
control MySQL's auto-commit mode, how to commit or roll back transactions, and demonstrates some
workarounds you can use if transactional capabilities are unavailable in your version of MySQL.

Chapter 16, gets you set up to write web-based MySQL scripts. Web programming allows you to generate dynamic
pages or collect information for storage in your database. The chapter discusses how to configure Apache to run
Perl, PHP, and Python scripts, and how to configure Tomcat to run Java scripts written using JSP notation. It also
provides an overview of the Java Standard Tag Library (JSTL) that is used heavily in JSP pages in the following
chapters.

Chapter 17, shows how to use the results of queries to produce various types of HTML structures, such as
paragraphs, lists, tables, hyperlinks, and navigation indexes. It also describes how to store images into MySQL,
retrieve and display them later, and how to send a downloadable result set to a browser.

Chapter 18, discusses ways to obtain input from users over the Web and use it to create new database records or as
the basis for performing searches. It deals heavily with form processing, including how to construct form elements,
such as radio buttons, pop-up menus, or checkboxes, based on information contained in your database.

Chapter 19, describes how to write web applications that remember information across multiple requests, using
MySQL for backing store. This is useful when you want to collect information in stages, or when you need to
make decisions based on what the user has done earlier.

Appendix A, indicates where to get the source code for the examples shown in this book, and where to get the
software you need to use MySQL and write your own database programs.

Appendix B, provides a general overview of JSP and installation instructions for the Tomcat web server. Read this
if you need to install Tomcat or are not familiar with it, or if you're never written JSP pages.

Appendix C, lists sources of information that provide additional information about topics covered in this book. It
also lists some books that provide introductory background for the programming languages used here.

As you get into later chapters, you'll sometimes find recipes that assume a knowledge of topics covered in earlier
chapters. This also applies within a chapter, where later sections often use techniques discussed earlier in the
chapter. If you jump into a chapter and find a recipe that uses a technique with which you're not familiar, check the
table of contents or the index to find out where the technique is covered. You should find that it's been explained
earlier. For example, if you find that a recipe sorts a query result using an ORDER BY clause that you don't
understand, turn to Chapter 6, which discusses various sorting methods and explains how they work.

Platform Notes

Development of the code in this book took place under MySQL 3.23 and 4.0. Because new features are added to
MySQL on a regular basis, some examples will not work under older versions. I've tried to point out version
dependencies when introducing such features for the first time.

The MySQL language API modules that 1 used include DBI 1.20 and up, DBD::mysgl 2.0901 and up, MySQLdb
0.9 and up, MM.MySQL 2.0.5 and up, and MySQL Connector/J 2.0.14. DBI requires Perl 5.004_05 or higher up
through DBI 1.20, after which it requires Perl 5.005_03 or higher. MySQLdb requires Python 1.5.6 or higher.
MM.MySQL and MySQL Connector/J require Java SDK 1.1 or higher.

Language processors include Perl 5.6 and 5.6.1; PHP 3 and 4; Python 1.5.6, 2.2; and 2.3, and Java SDK 1.3.1.
Most PHP scripts shown here will run under either PHP 3 or PHP 4 (although I strongly recommend PHP 4 over
PHP 3). Scripts that require PHP 4 are so noted.

I do not assume that you are using Unix, although that is my own preferred development platform. Most of the
material here should be applicable both to Unix and Windows. The operating systems | used most for development
of the recipes in this book were Mac OS X; RedHat Linux 6.2, 7.0, and 7.3; and various versions of Windows (Me,
98, NT, and 2000).

I do assume that MySQL is installed already and available for you to use. I also assume that if you plan to write
your own MySQL-based programs, you're reasonably familiar with the language you'll use. If you need to install
software, see Appendix A. If you require background material on the programming languages used here, see

Appendix C.

Conventions Used in This Book

The following font conventions have been used throughout the book:

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such as variable or
function names.

Constant width bold

Used to indicate text that you type when running commands.

Constant width italic

Used to indicate variable input; you should substitute a value of your own choosing.

Italic

Used for URLSs, hostnames, names of directories and files, Unix commands and options, and occasionally
for emphasis.

Commands often are shown with a prompt to illustrate the context in which they are used. Commands that you
issue from the command line are shown with a % prompt:

% chmod 600 my.cnf

That prompt is one that Unix users are used to seeing, but it doesn't necessarily signify that a command will work
only under Unix. Unless indicated otherwise, commands shown with a % prompt generally should work under
Windows, too.

If you should run a command under Unix as the root user, the prompt is # instead:

chkconfig --add tomcat4

For commands that are specific only to Windows, the C-\> prompt is used:

C:\> copy C:\mysqgl\lib\cygwinb19.dIl C:\Windows\System

SQL statements that are issued from within the mysql client program are shown with a mysql> prompt and
terminated with a semicolon:

mysqgl> SELECT * FROM my_table;

For examples that show a query result as you would see it when using mysqgl, | sometimes truncate the output,
using an ellipsis (. . .) to indicate that the result consists of more rows than are shown. The following query
produces many rows of output, of which those in the middle have been omitted:

mysql> SELECT name, abbrev FROM states ORDER BY name;

e Fomm - +
| name | abbrev |
o o —_—— +
Alabama	AL
Alaska	AK
Arizona	AZ
West Virginia	WV
Wisconsin	wi
Wyoming	wy
e Fomm - +

Examples that just show the syntax for SQL statements do not include the mysql> prompt, but they do include
semicolons as necessary to make it clear where statements end. For example, this is a single statement:

CREATE TABLE t1 (i INT)
SELECT * FROM t2;

But this example represents two statements:

CREATE TABLE t1 (i INT);
SELECT * FROM t2;

The semicolon is a notational convenience used within mysql as a statement terminator. But it is not part of SQL
itself, so when you issue SQL statements from within programs that you write (for example, using Perl or Java),
you should not include terminating semicolons.

o &

This icon indicates a tip, suggestion, or general note.

L
-
W Ma

The Companion Web Site

MySQL Cookbook has a companion web site that you can visit to obtain the source code and sample data for
examples developed throughout this book:

http://www.kitebird.com/mysal-cookbook/

The main software distribution is named recipes and you'll find many references to it throughout the book. You
can use it to save a lot of typing. For example, when you see a CREATE TABLE statement in the book that describes
what a database table looks like, you'll find a SQL batch file in the tables directory of the recipes distribution that
you can use to create the table instead of typing out the definition. Change location into the tables directory, then
execute the following command, where filename is the name of the file containing the CREATE TABLE statement:

% mysql cookbook < filename

If you need to specify MySQL username or password options, put them before the database name.
For more information about the distributions, see Appendix A.

The Kitebird site also makes some of the examples from the book available online so that you can try them out
from your browser.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

O'Reilly keeps a web page for this book that you can access at:

http://www.oreilly.com/catalog/mysqglckbk/

To comment or ask technical questions about this book, send email to:

bookguestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly web
site at:

http://www.oreilly.com

Additional Resources

Any language that attracts a following tends to benefit from the efforts of its user community, because people who
use the language produce code that they make available to others. Perl in particular is served by an extensive
support network designed to provide external modules that are not distributed with Perl itself. This is called the
Comprehensive Perl Archive Network (CPAN), a mechanism for organizing and distributing Perl code and
documentation. CPAN contains modules that allow database access, web programming, and XML processing, to
name a few of direct relevance to this cookbook. External support exists for the other languages as well, though
none of them currently enjoys the same level of organization as CPAN. PHP has the PEAR archive, and Python
has a module archive called the Vaults of Parnassus. For Java, a good starting point is Sun's Java site. Sites that
you can visit to find more information are shown in the following table.

API language Where to find external support
Perl http://cpan.perl.org/
PHP http://pear.php.net/
Python http://www.python.org/
Java http://java.sun.com/

Acknowledgments

I'd like to thank my technical reviewers, Tim Allwine, David Lane, Hugh Williams, and Justin Zobel. They made
several helpful suggestions and corrections with regard to both organizational structure and technical accuracy.
Several members of MySQL AB were gracious enough to add their comments: In particular, principal MySQL
developer Monty Widenius combed the text and spotted many problems. Arjen Lentz, Jani Tolonen, Sergei
Golubchik, and Zak Greant reviewed sections of the manuscript as well. Andy Dustman, author of the Python
MySQLdb module, and Mark Matthews, author of MM.MySQL and MySQL Connector/J, also provided feedback.
My thanks to all for improving the manuscript; any errors remaining are my own.

Laurie Petrycki, executive editor, conceived the idea for the book and provided valuable overall editorial guidance
and cattle-prodding. Lenny Muellner, tools expert, assisted in the conversion of the manuscript from my original
format into something printable. David Chu acted as editorial assistant. Ellie VVolckhausen designed the cover,
which | am happy to see is reptilian in nature. Linley Dolby served as the production editor and proofreader, and
Colleen Gorman, Darren Kelly, Jeffrey Holcomb, Brian Sawyer, and Claire Cloutier provided quality control.

Thanks to Todd Greanier and Sean Lahman of The Baseball Archive for all their hard work in putting together the
baseball database that is used for several of the examples in this book.

Some authors are able to compose text productively while sitting at a keyboard, but | write better while sitting far
from a computer—preferably with a cup of coffee. That being so, I'd like to acknowledge my debt to the Sow's Ear
coffee shop in Verona for providing pleasant surroundings in which to spend many hours scribbling on paper.

My wife Karen provided considerable support and understanding in what turned out to be a much longer endeavor
than anticipated. Her encouragement is much appreciated, and her patience something to marvel at.

Chapter

Section 1.1.

1. Using the mysqgl Client Program

Introduction

Section 1.2.

Setting Up a MySOL User Account

Section 1.3.

Creating a Database and a Sample Table

Section 1.4.

Starting and Terminating mysql

Section 1.5.

Specifying Connection Parameters by Using Option Files

Section 1.6.

Protecting Option Files

Section 1.7.

Mixing Command-Line and Option File Parameters

Section 1.8.

What to Do if mysal Cannot Be Found

Section 1.9.

Setting Environment Variables

Section 1.10.

Issuing Queries

Section 1.11.

Selecting a Database

Section 1.12.

Canceling a Partially Entered Query

Section 1.13.

Repeating and Editing Queries

Section 1.14.

Using Auto-Completion for Database and Table Names

Section 1.15.

Using SOL Variables in Queries

Section 1.16.

Telling mysal to Read Queries from a File

Section 1.17.

Telling mysal to Read Queries from Other Programs

Section 1.18.

Specifying Queries on the Command Line

Section 1.19.

Using Copy and Paste as a mysql Input Source

Section 1.20.

Preventing Query Output from Scrolling off the Screen

Section 1.21.

Sending Query Output to a File or to a Program

Section 1.22.

Selecting Tabular or Tab-Delimited Query Output Format

Section 1.23.

Specifying Arbitrary Output Column Delimiters

Section 1.24.

Producing HTML Output

Section 1.25.

Producing XML Output

Section 1.26.

Suppressing Column Headings in Query Output

Section 1.27.

Numbering Query Output Lines

Section 1.28.

Making Long Output Lines More Readable

Section 1.29.

Controlling mysqgl's VVerbosity Level

Section 1.30.

Logqging Interactive mysal Sessions

Section 1.31.

Creating mysal Scripts from Previously Executed Queries

Section 1.32.

Using mysqgl as a Calculator

Section 1.33.

Using mysal in Shell Scripts

1.1 Introduction

The MySQL database system uses a client-server architecture that centers around the server, mysqgld. The server is
the program that actually manipulates databases. Client programs don't do that directly; rather, they communicate
your intent to the server by means of queries written in Structured Query Language (SQL). The client program or
programs are installed locally on the machine from which you wish to access MySQL, but the server can be
installed anywhere, as long as clients can connect to it. MySQL is an inherently networked database system, so
clients can communicate with a server that is running locally on your machine or one that is running somewhere
else, perhaps on a machine on the other side of the planet. Clients can be written for many different purposes, but
each interacts with the server by connecting to it, sending SQL queries to it to have database operations performed,
and receiving the query results from it.

One such client is the mysql program that is included in MySQL distributions. When used interactively, mysql
prompts for a query, sends it to the MySQL server for execution, and displays the results. This capability makes
mysql useful in its own right, but it's also a valuable tool to help you with your MySQL programming activities. It's
often convenient to be able to quickly review the structure of a table that you're accessing from within a script, to
try a query before using it in a program to make sure it produces the right kind of output, and so forth. mysql is just
right for these jobs. mysgl also can be used non-interactively, for example, to read queries from a file or from other
programs. This allows you to use it from within scripts or cron jobs or in conjunction with other applications.

This chapter describes mysgl's capabilities so that you can use it more effectively. Of course, to try out for yourself
the recipes and examples shown in this book, you'll need a MySQL user account and a database to work with. The
first two sections of the chapter describe how to use mysql to set these up. For demonstration purposes, the
examples assume that you'll use MySQL as follows:

e The MySQL server is running on the local host.
e Your MySQL username and password are cbuser and cbpass.
e Your database is named cookbook.

For your own experimentation, you can violate any of these assumptions. Your server need not be running locally,
and you need not use the username, password, or database name that are used in this book. Naturally, if you don't
use MySQL in the manner just described, you'll need to change the examples to use values that are appropriate for
your system. Even if you do use different names, | recommend that you at least create a database specifically for
trying the recipes shown here, rather than one you're using currently for other purposes. Otherwise, the names of
your existing tables may conflict with those used in the examples, and you'll have to make modifications to the
examples that are unnecessary when you use a separate database.

1.2 Setting Up a MySQL User Account
1.2.1 Problem
You need to create an account to use for connecting to the MySQL server running on a given host.
1.2.2 Solution

Use the GRANT statement to set up the MySQL user account. Then use that account's name and password to make
connections to the server.

1.2.3 Discussion

Connecting to a MySQL server requires a username and password. You can also specify the name of the host
where the server is running. If you don't specify connection parameters explicitly, mysql assumes default values.
For example, if you specify no hostname, mysql typically assumes the server is running on the local host.

The following example shows how to use the mysql program to connect to the server and issue a GRANT statement
that sets up a user account with privileges for accessing a database named cookbook. The arguments to mysql
include -h localhost to connect to the MySQL server running on the local host, -p to tell mysql to prompt for a
password, and -u root to connect as the MySQL root user. Text that you type is shown in bold; non-bold text is
program output:

% mysql -h localhost -p -u root

Enter password: ******

mysgl> GRANT ALL ON cookbook.* TO *cbuser®@"localhost®™ IDENTIFIED BY “cbpass”;
Query OK, 0 rows affected (0.09 sec)

mysql> QUIT

Bye

After you enter the mysql command shown on the first line, if you get a message indicating that the program
cannot be found or that it is a bad command, see Recipe 1.8. Otherwise, when mysql prints the password prompt,
enter the MySQL root password where you see the ******_(If the MySQL root user has no password, just press
Return at the password prompt.) Then issue a GRANT statement like the one shown.

To use a database name other than cookbook, substitute its name where you see cookbook in the GRANT statement.
Note that you need to grant privileges for the database even if the user account already exists. However, in that
case, you'll likely want to omit the IDENTIFIED BY "cbpass*® part of the statement, because otherwise you'll
change that account's current password.

The hostname part of "cbuser=@"localhost" indicates the host from which you'll be connecting to the MySQL
server to access the cookbook database. To set up an account that will connect to a server running on the local
host, use localhost, as shown. If you plan to make connections to the server from another host, substitute that
host in the GRANT statement. For example, if you'll be connecting to the server as cbuser from a host named
Xyz.com, the GRANT statement should look like this:

mysql> GRANT ALL ON cookbook.* TO "cbuser®@"xyz.com® IDENTIFIED BY "cbpass-®;

It may have occurred to you that there's a bit of a paradox involved in the procedure just described. That is, to set
up a user account that can make connections to the MySQL server, you must connect to the server first so that you
can issue the GRANT statement. I'm assuming that you can already connect as the MySQL root user, because GRANT
can be used only by a user such as root that has the administrative privileges needed to set up other user accounts.
If you can't connect to the server as root, ask your MySQL administrator to issue the GRANT statement for you.
Once that has been done, you should be able to use the new MySQL account to connect to the server, create your
own database, and proceed from there on your own.

Sidebar 1. MySQL Accounts and Login
Accounts

MySQL accounts and login accounts for your operating system are different. For example, the MySQL
root user and the Unix root user are separate and have nothing to do with each other, even though the
username is the same in each case. This means they are very likely to have different passwords. It also
means you cannot create new MySQL accounts by creating login accounts for your operating system;
use the GRANT statement instead.

1.3 Creating a Database and a Sample Table
1.3.1 Problem

You want to create a database and to set up tables within it.

1.3.2 Solution

Use a CREATE DATABASE statement to create a database, a CREATE TABLE statement for each table you want to use,
and INSERT to add records to the tables.

1.3.3 Discussion

The GRANT statement used in the previous section defines privileges for the cookbook database, but does not create
it. You need to create the database explicitly before you can use it. This section shows how to do that, and also
how to create a table and load it with some sample data that can be used for examples in the following sections.

After the cbuser account has been set up, verify that you can use it to connect to the MySQL server. Once you've
connected successfully, create the database. From the host that was named in the GRANT statement, run the
following commands to do this (the host named after -h should be the host where the MySQL server is running):

% mysql -h localhost -p -u cbuser
Enter password: cbpass

mysqgl> CREATE DATABASE cookbook;
Query OK, 1 row affected (0.08 sec)

Now you have a database, so you can create tables in it. Issue the following statements to select cookbook as the
default database, create a simple table, and populate it with a few records:®

)£ you don't want to enter the complete text of the INSERT statements (and I don't blame you), skip ahead to Recipe 1.13 for a shortcut. And if you don't want to type in any of the
statements, skip ahead to Recipe 1.16.

mysql> USE cookbook;
mysqgl> CREATE TABLE limbs (thing VARCHAR(20), legs INT, arms INT);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES("human®,2,2);

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO

limbs
limbs
limbs
limbs
limbs
limbs
limbs
limbs
limbs
limbs
limbs

mysql>
mysql>
mysql>
mysql>
mysql>
mysql>
mysql>
mysql>
mysql>
mysql>
mysql>

(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)

VALUES("insect”,6,0);
VALUES("squid*®,0,10);
VALUES("octopus®,0,8);
VALUES("fish",0,0);
VALUES("centipede®,100,0);
VALUES("table®,4,0);
VALUES("armchair®,4,2);
VALUES("phonograph®,0,1);
VALUES("tripod~,3,0);
VALUES("Peg Leg Pete®,1,2);
VALUES("space alien® ,NULL,NULL);

The table is named Iimbs and contains three columns to records the number of legs and arms possessed by various
life forms and objects. (The physiology of the alien in the last row is such that the proper values for the arms and
legs column cannot be determined; NULL indicates "unknown value.")

Verify that the table contains what you expect by issuing a SELECT statement:

mysql> SELECT * FROM limbs;

+
I
+
| human |
| insect |
| squid |
| octopus |
| Fish |
| centipede |
| table |
| armchair |
| phonograph |
| tripod |
| Peg Leg Pete |
| space alien |
T +
12 rows in set (0.00 sec)

=
o
rPWORARRMOOOOON

At this point, you're all set up with a database and a table that can be used to run some example queries.

1.4 Starting and Terminating mysql

1.4.1 Problem
You want to start and stop the mysql program.

1.4.2 Solution

Invoke mysgl from your command prompt to start it, specifying any connection parameters that may be necessary.

To leave mysql, use a QUIT statement.

1.4.3 Discussion

To start the mysql program, try just typing its name at your command-line prompt. If mysql starts up correctly,
you'll see a short message, followed by a mysql> prompt that indicates the program is ready to accept queries. To
illustrate, here's what the welcome message looks like (to save space, | won't show it in any further examples):

% mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 18427 to server version: 3.23.51-log

Type “help;" or "\h" for help. Type "\c" to clear the buffer.

mysql>

If mysql tries to start but exits immediately with an "access denied" message, you'll need to specify connection
parameters. The most commonly needed parameters are the host to connect to (the host where the MySQL server
runs), your MySQL username, and a password. For example:

% mysql -h localhost -p -u cbuser
Enter password: cbpass

In general, I'll show mysql commands in examples with no connection parameter options. | assume that you'll
supply any parameters that you need, either on the command line, or in an option file (Recipe 1.5) so that you don't
have to type them each time you invoke mysql.

If you don't have a MySQL username and password, you need to obtain permission to use the MySQL server, as
described earlier in Recipe 1.2.

The syntax and default values for the connection parameter options are shown in the following table. These options
have both a single-dash short form and a double-dash long form.

Parameter type Option syntax forms Default value
Hostname -h hostname--host=hostname localhost
Username -U username--USer=username Your login name
Password -p--password None

As the table indicates, there is no default password. To supply one, use --password or -p, then enter your password
when mysql prompts you for it:

%

mysql -p
Enter password: $enter your password here

If you like, you can specify the password directly on the command line by using either -ppassword (note that there
is no space after the -p) or --password=password. | don't recommend doing this on a multiple-user machine,
because the password may be visible momentarily to other users who are running tools such as ps that report
process information.

If you get an error message that mysgl cannot be found or is an invalid command when you try to invoke it, that
means your command interpreter doesn't know where mysqgl is installed. See Recipe 1.8.

To terminate a mysgl session, issue a QUIT statement:

mysqgl> QUIT

You can also terminate the session by issuing an EXIT statement or (under Unix) by typing Ctrl-D.
The way you specify connection parameters for mysql also applies to other MySQL programs such as mysqgldump

and mysgladmin. For example, some of the actions that mysgladmin can perform are available only to the MySQL
root account, so you need to specify name and password options for that user:

% mysqladmin -p -u root shutdown
Enter password:

1.5 Specifying Connection Parameters by Using Option Files
1.5.1 Problem

You don't want to type connection parameters on the command line every time you invoke mysql.

1.5.2 Solution

Put the parameters in an option file.

1.5.3 Discussion

To avoid entering connection parameters manually, put them in an option file for mysgl to read automatically.
Under Unix, your personal option file is named .my.cnf in your home directory. There are also site-wide option
files that administrators can use to specify parameters that apply globally to all users. You can use /etc/my.cnf or

the my.cnf file in the MySQL server's data directory. Under Windows, the option files you can use are C:\my.cnf,
the my.ini file in your Windows system directory, or my.cnf in the server's data directory.

o Windows may hide filename extensions when displaying files, so a file named my.cnf may
«: | appearto be named just my. Your version of Windows may allow you to disable extension-
"4 hiding. Alternatively, issue a DIR command in a DOS window to see full names.

The following example illustrates the format used to write MySQL option files:

general client program connection options
[client]

host=l1ocalhost

user=cbuser

password=cbpass

options specific to the mysqgl program
[mysql]

no-auto-rehash

specify pager for interactive mode
pager=/usr/bin/less

This format has the following general characteristics:

Lines are written in groups. The first line of the group specifies the group name inside of square brackets,
and the remaining lines specify options associated with the group. The example file just shown has a
[client] group and a [mysqgl] group. Within a group, option lines are written in name=value format,
where name corresponds to an option name (without leading dashes) and value is the option's value. If an
option doesn't take any value (such as for the no-auto-rehash option), the name is listed by itself with no
trailing =value part.

If you don't need some particular parameter, just leave out the corresponding line. For example, if you
normally connect to the default host (1ocalhost), you don't need any host line. If your MySQL username
is the same as your operating system login name, you can omit the user line.

In option files, only the long form of an option is allowed. This is in contrast to command lines, where
options often can be specified using a short form or a long form. For example, the hostname can be given
using either -h hostname or --host=hostname on the command line; in an option file, only host=hostname
is allowed.

Options often are used for connection parameters (such as host, user, and password). However, the file
can specify options that have other purposes. The pager option shown for the [mysql] group specifies the
paging program that mysql should use for displaying output in interactive mode. It has nothing to do with
how the program connects to the server.

The usual group for specifying client connection parameters is [client]. This group actually is used by all
the standard MySQL clients, so by creating an option file to use with mysql, you make it easier to invoke
other programs such as mysgldump and mysgladmin as well.

You can define multiple groups in an option file. A common convention is for a program to look for
parameters in the [client] group and in the group named after the program itself. This provides a
convenient way to list general client parameters that you want all client programs to use, but still be able to
specify options that apply only to a particular program. The preceding sample option file illustrates this
convention for the mysql program, which gets general connection parameters from the [client] group and
also picks up the no-auto-rehash and pager options from the [mysql] group. (If you put the mysql-
specific options in the [client] group, that will result in "unknown option" errors for all other programs
that use the [client] group and they won't run properly.)

If a parameter is specified multiple times in an option file, the last value found takes precedence. This
means that normally you should list any program-specific groups after the [client] group so that if there
is any overlap in the options set by the two groups, the more general options will be overridden by the
program-specific values.

Lines beginning with # or ; characters are ignored as comments. Blank lines are ignored, too.

o Option files must be plain text files. If you create an option file with a word processor that uses some non-
text format by default, be sure to save the file explicitly as text. Windows users especially should take note
of this.

o Options that specify file or directory pathnames should be written using 7 as the pathname separator
character, even under Windows.

If you want to find out which options will be taken from option files by mysql, use this command:

% mysql --print-defaults

You can also use the my_print_defaults utility, which takes as arguments the names of the option file groups that it
should read. For example, mysql looks in both the [client] and [mysql] groups for options, so you can check
which values it will take from option files like this:

% my print_defaults client mysql

1.6 Protecting Option Files

1.6.1 Problem

Your MySQL username and password are stored in your option file, and you don't want other users reading it.
1.6.2 Solution

Change the file's mode to make it accessible only by you.

1.6.3 Discussion

If you use a multiple-user operating system such as Unix, you should protect your option file to prevent other users

from finding out how to connect to MySQL using your account. Use chmod to make the file private by setting its
mode to allow access only by yourself:

% chmod 600 .my.cnf

1.7 Mixing Command-Line and Option File Parameters
1.7.1 Problem

You'd rather not store your MySQL password in an option file, but you don't want to enter your username and
server host manually.

1.7.2 Solution

Put the username and host in the option file, and specify the password interactively when you invoke mysql; it
looks both in the option file and on the command line for connection parameters. If an option is specified in both
places, the one on the command line takes precedence.

1.7.3 Discussion

mysq|l first reads your option file to see what connection parameters are listed there, then checks the command line
for additional parameters. This means you can specify some options one way, and some the other way.

Command-line parameters take precedence over parameters found in your option file, so if for some reason you
need to override an option file parameter, just specify it on the command line. For example, you might list your
regular MySQL username and password in the option file for general purpose use. If you need to connect on
occasion as the MySQL root user, specify the user and password options on the command line to override the
option file values:

% mysql -p -u root

To explicitly specify "no password" when there is a non-empty password in the option file, use -p on the command
line, and then just press Return when mysql prompts you for the password:

%

mysql -p

Enter password: é—press Return here

1.8 What to Do if mysqgl Cannot Be Found
1.8.1 Problem

When you invoke mysgl from the command line, your command interpreter can't find it.
1.8.2 Solution

Add the directory where mysql is installed to your PATH setting. Then you'll be able to run mysql from any
directory easily.

1.8.3 Discussion

If your shell or command interpreter can't find mysgl when you invoke it, you'll see some sort of error message. It
may look like this under Unix:

% mysql
mysqgl: Command not found.

Or like this under Windows:

C:\> mysql
Bad command or invalid filename

One way to tell your shell where to find mysql is to type its full pathname each time you run it. The command
might look like this under Unix:

% /usr/local/mysgl/bin/mysql

Or like this under Windows:

C:\> C:\mysqgl\bin\mysqgl

Typing long pathnames gets tiresome pretty quickly, though. You can avoid doing so by changing into the
directory where mysqgl is installed before you run it. However, | recommend that you not do that. If you do, the
inevitable result is that you'll end up putting all your datafiles and query batch files in the same directory as mysql,
thus unnecessarily cluttering up what should be a location intended only for programs.

A Dbetter solution is to make sure that the directory where mysql is installed is included in the PATH environment
variable that lists pathnames of directories where the shell looks for commands. (See Recipe 1.9.) Then you can
invoke mysql from any directory by entering just its name, and your shell will be able to find it. This eliminates a
lot of unnecessary pathname typing. An additional benefit is that because you can easily run mysgl from anywhere,
you will have no need to put your datafiles in the same directory where mysql is located. When you're not
operating under the burden of running mysql from a particular location, you'll be free to organize your files in a
way that makes sense to you, not in a way imposed by some artificial necessity. For example, you can create a
directory under your home directory for each database you have and put the files associated with each database in
the appropriate directory.

I've pointed out the importance of the search path here because | receive many questions from people who aren't
aware of the existence of such a thing, and who consequently try to do all their MySQL-related work in the bin
directory where mysql is installed. This seems particularly common among Windows users. Perhaps the reason is
that, except for Windows NT and its derivatives, the Windows Help application seems to be silent on the subject of
the command interpreter search path or how to set it. (Apparently, Windows Help considers it dangerous for
people to know how to do something useful for themselves.)

Another way for Windows users to avoid typing the pathname or changing into the mysql directory is to create a
shortcut and place it in a more convenient location. That has the advantage of making it easy to start up mysql just
by opening the shortcut. To specify command-line options or the startup directory, edit the shortcut's properties. If
you don't always invoke mysql with the same options, it might be useful to create a shortcut corresponding to each
set of options you need—for example, one shortcut to connect as an ordinary user for general work and another to
connect as the MySQL root user for administrative purposes.

1.9 Setting Environment Variables

1.9.1 Problem

You need to modify your operating environment, for example, to change your shell's PATH setting.
1.9.2 Solution

Edit the appropriate shell startup file. Under Windows NT-based systems, another alternative is to use the System
control panel.

1.9.3 Discussion

The shell or command interpreter you use to run programs from the command-line prompt includes an
environment in which you can store variable values. Some of these variables are used by the shell itself. For
example, it uses PATH to determine which directories to look in for programs such as mysgl. Other variables are
used by other programs (such as PERL5L 1B, which tells Perl where to look for library files used by Perl scripts).

Your shell determines the syntax used to set environment variables, as well as the startup file in which to place the
settings. Typical startup files for various shells are shown in the following table. If you've never looked through
your shell's startup files, it's a good idea to do so to familiarize yourself with their contents.

Shell Possible startup files
csh, tcsh Jogin, .cshrc, .tcshrc
sh, bash, ksh .profile .bash_profile, .bash_login, .bashrc
DOS prompt C:\AUTOEXEC.BAT

The following examples show how to set the PATH variable so that it includes the directory where the mysql
program is installed. The examples assume there is an existing PATH setting in one of your startup files. If you have
no PATH setting currently, simply add the appropriate line or lines to one of the files.

o If you're reading this section because you've been referred here from another chapter, you'll
s | probably be more interested in changing some variable other than PATH. The instructions
44 are similar because you use the same syntax.

The PATH variable lists the pathnames for one or more directories. If an environment variable's value consists of
multiple pathnames, it's conventional under Unix to separate them using the colon character (:). Under Windows,
pathnames may contain colons, so the separator is the semicolon character (;).

To set the value of PATH, use the instructions that pertain to your shell:

For csh or tcsh, look for a setenv PATH command in your startup files, then add the appropriate directory to
the line. Suppose your search path is set by a line like this in your .login file:

setenv PATH /bin:/usr/bin:/usr/local/bin

If mysql is installed in /usr/local/mysgl/bin, add that directory to the search path by changing the setenv
line to look like this:

setenv PATH /usr/local/mysqgl/bin:/bin:/usr/binz/usr/local/bin

It's also possible that your path will be set with set path, which uses different syntax:

set path = (Jusr/local/mysgl/bin /bin Zusr/bin Zusr/local/bin)

For a shell in the Bourne shell family such as sh, bash, or ksh, look in your startup files for a line that sets
up and exports the PATH variable:

export PATH=/bin:/usr/bin:/usr/local/bin

The assignment and the export might be on separate lines:

PATH=/bin:/usr/bin:/usr/local/bin
export PATH

Change the setting to this:

export PATH=/usr/local/mysgl/bin:/bin:/usr/bin:/usr/local/bin

Or:

PATH=/usr/local/mysql/bin:/bin:/usr/bin:/usr/local/bin
export PATH

Under Windows, check for a line that sets the PATH variable in your AUTOEXEC.BAT file. It might look
like this:

PATH=C:\WINDOWS ; C:\WINDOWS\COMMAND

Or like this:

SET PATH=C:\WINDOWS;C:\WINDOWS\COMMAND

Change the PATH value to include the directory where mysql is installed. If this is C:\mysgl\bin, the
resulting PATH setting looks like this:

PATH=C:\mysqgl\bin;C:\WINDOWS; C:\WINDOWS\COMMAND

Or:

SET PATH=C:\mysqgl\bin;C:\WINDOWS;C:\WINDOWS\COMMAND

o Under Windows NT-based systems, another way to change the PATH value is to use the System control
panel (use its Environment or Advanced tab, whichever is present). In other versions of Windows, you can
use the Registry Editor application. Unfortunately, the name of the Registry Editor key that contains the
path value seems to vary among versions of Windows. For example, on the Windows machines that | use,
the key has one name under Windows Me and a different name under Windows 98; under Windows 95, |
couldn't find the key at all. It's probably simpler just to edit AUTOEXEC.BAT.

After setting an environment variable, you'll need to cause the modification to take effect. Under Unix, you can log

out and log in again. Under Windows, if you set PATH using the System control panel, you can simply open a new
DOS window. If you edited AUTOEXEC.BAT instead, restart the machine.

1.10 Issuing Queries

1.10.1 Problem

You've started mysqgl and now you want to send queries to the MySQL server.
1.10.2 Solution

Just type them in, but be sure to let mysql know where each one ends.
1.10.3 Discussion

To issue a query at the mysql> prompt, type it in, add a semicolon (;) at the end to signify the end of the
statement, and press Return. An explicit statement terminator is necessary; mysgl doesn't interpret Return as a

terminator because it's allowable to enter a statement using multiple input lines. The semicolon is the most
common terminator, but you can also use \g ("'go") as a synonym for the semicolon. Thus, the following examples
are equivalent ways of issuing the same query, even though they are entered differently and terminated
differently:=

2 Example queries in this book are shown with SQL keywords like SELECT in uppercase for distinctiveness, but that's simply a typographical convention. You can enter keywords
in any lettercase.

mysql> SELECT NOW();

e +
I NOwW() I
T +
| 2001-07-04 10:27:23 |
T +
mysql> SELECT
-> NOW()\g

T +
I NOW(C) I
T +
| 2001-07-04 10:27:28 |
T +

Notice for the second query that the prompt changes from mysql> to -> on the second input line. mysql changes
the prompt this way to let you know that it's still waiting to see the query terminator.

Be sure to understand that neither the ; character nor the \g sequence that serve as query terminators are part of the
query itself. They're conventions used by the mysql program, which recognizes these terminators and strips them
from the input before sending the query to the MySQL server. It's important to remember this when you write your
own programs that send queries to the server (as we'll begin to do in the next chapter). In that context, you don't
include any terminator characters; the end of the query string itself signifies the end of the query. In fact, adding a
terminator may well cause the query to fail with an error.

1.11 Selecting a Database
1.11.1 Problem
You want to tell mysgl which database to use.
1.11.2 Solution

Name the database on the mysgl command line or issue a USE statement from within mysql.

1.11.3 Discussion

When you issue a query that refers to a table (as most queries do), you need to indicate which database the table is
part of. One way to do so is to use a fully qualified table reference that begins with the database name. (For
example, cookbook. limbs refers to the 1imbs table in the cookbook database.) As a convenience, MySQL also
allows you to select a default (current) database so that you can refer to its tables without explicitly specifying the
database name each time. You can specify the database on the command line when you start mysql:

% mysql cookbook

If you provide options on the command line such as connection parameters when you run mysqgl, they should
precede the database name:

% mysql -h host -p -u user cookbook

If you've already started a mysql session, you can select a database (or switch to a different one) by issuing a USE
statement:

mysql> USE cookbook;
Database changed

If you've forgotten or are not sure which database is the current one (which can happen easily if you're using
multiple databases and switching between them several times during the course of a mysql session), use the
following statement:

mysql> SELECT DATABASE();

TR . +
| DATABASE() |
o +
| cookbook |
Fmm +

DATABASE() is a function that returns the name of the current database. If no database has been selected yet, the

function returns an empty string:

mysql> SELECT DATABASE();

o +
| DATABASE() |
e +
| |
o +

The sTATUS command (and its synonym, \s) also display the current database name, in additional to several other
pieces of information:

mysqgl> \s

Connection id: 5589

Current database: cookbook

Current user: cbuser@localhost
Current pager: stdout

Using outfile: "

Server version: 3.23.51-1og
Protocol version: 10

Connection: Localhost via UNIX socket
Client characterset: latinl
Server characterset: latinl

UNIX socket: /tmp/mysql . sock
Uptime: 9 days 39 min 43 sec

Threads: 4 Questions: 42265 Slow queries: 0 Opens: 82 Flush tables: 1
Open tables: 52 Queries per second avg: 0.054

Sidebar 2. Temporarily Using a Table from
Another Database

To use a table from another database temporarily, you can switch to that database and then switch
back when you're done using the table. However, you can also use the table without switching
databases by referring to the table using its fully qualified name. For example, to use the table
other_tbl in another database other_db, you can refer to it as other_db.other_tbl.

1.12 Canceling a Partially Entered Query
1.12.1 Problem

You start to enter a query, then decide not to issue it after all.

1.12.2 Solution
Cancel the query using your line kill character or the \c sequence.

1.12.3 Discussion

If you change your mind about issuing a query that you're entering, cancel it. If the query is on a single line, use
your line kill character to erase the entire line. (The particular character to use depends on your terminal setup; for
me, the character is Ctrl-U.) If you've entered a statement over multiple lines, the line kill character will erase only
the last line. To cancel the statement completely, enter \c and type Return. This will return you to the mysqgl>
prompt:

mysql> SELECT *
-> FROM l1imbs
-> ORDER BY\c
mysql>

Sometimes \c appears to do nothing (that is, the mysql> prompt does not reappear), which leads to the sense that
you're "trapped"” in a query and can't escape. If \c is ineffective, the cause usually is that you began typing a quoted
string and haven't yet entered the matching end quote that terminates the string. Let mysql's prompt help you figure
out what to do here. If the prompt has changed from mysql> to "'>, That means mysql is looking for a terminating
double quote. If the prompt is "> instead, mysql is looking for a terminating single quote. Type the appropriate
matching quote to end the string, then enter \c followed by Return and you should be okay.

1.13 Repeating and Editing Queries
1.13.1 Problem

The query you just entered contained an error, and you want to fix it without typing the whole thing again. Or you
want to repeat an earlier statement without retyping it.

1.13.2 Solution
Use mysql's built-in query editor.
1.13.3 Discussion

If you issue a long query only to find that it contains a syntax error, what should you do? Type in the entire
corrected query from scratch? No need. mysgl maintains a statement history and supports input-line editing. This
allows you to recall queries so that you can modify and reissue them easily. There are many, many editing
functions, but most people tend to use a small set of commands for the majority of their editing.® A basic set of
useful commands is shown in the following table. Typically, you use Up Arrow to recall the previous line, Left
Arrow and Right Arrow to move around within the line, and Backspace or Delete to erase characters. To add new
characters to the line, just move the cursor to the appropriate spot and type them in. When you're done editing,
press Return to issue the query (the cursor need not be at the end of the line when you do this).

I The input-line editing capabilities in mysql are based on the GNU Readline library. You can read the documentation for this library to find out more about the many editing functions
that are available. For more information, check the Bash manual, available online at http://www.gnu.org/manual/.

Editing Key Effect of Key
| Up Arrow Scroll up through statement history
| Down Arrow Scroll down through statement history
| Left Arrow Move left within line
| Right Arrow Move right within line
| Ctrl-A Move to beginning of line
| Ctrl-E Move to end of line
| Backspace Delete previous character
ctrl-D Delete character under cursor

Input-line editing is useful for more than just fixing mistakes. You can use it to try out variant forms of a query
without retyping the entire thing each time. It's also handy for entering a series of similar statements. For example,
if you wanted to use the query history to issue the series of INSERT statements shown earlier in Recipe 1.3 to create
the 1imbs table, first enter the initial INSERT statement. Then, to issue each successive statement, press the Up
Arrow key to recall the previous statement with the cursor at the end, backspace back through the column values to

erase them, enter the new values, and press Return.

To recall a statement that was entered on multiple lines, the editing procedure is a little trickier than for single-line
statements. In this case, you must recall and reenter each successive line of the query in order. For example, if
you've entered a two-line query that contains a mistake, press Up Arrow twice to recall the first line. Make any
modifications necessary and press Return. Then press Up Arrow twice more to recall the second line. Modify it,
press Return, and the query will execute.

Under Windows, mysql allows statement recall only for NT-based systems. For versions such as Windows 98 or
Me, you can use the special mysqlc client program instead. However, mysglc requires an additional library file,
cygwinb19.dll. If you find a copy of this library in the same directory where mysqlc is installed (the bin dir under
the MySQL installation directory), you should be all set. If the library is located in the MySQL lib directory, copy
it into your Windows system directory. The command looks something like this; you should modify it to reflect the
actual locations of the two directories on your system:

C:\> copy C:\mysql\lib\cygwinbl9.dIl C:\Windows\System

After you make sure the library is in a location where mysglc can find it, invoke mysglc and it should be capable of
input-line editing.

One unfortunate consequence of using mysqglc is that it's actually a fairly old program. (For example, even in

MySQL 4.x distributions, mysglc dates back to 3.22.7.) This means it doesn't understand newer statements such as
SOURCE.

1.14 Using Auto-Completion for Database and Table Names
1.14.1 Problem
You wish there was a way to type database and table names more quickly.
1.14.2 Solution
There is; use mysgl's name auto-completion facility.
1.14.3 Discussion
Normally when you use mysql interactively, it reads the list of database names and the names of the tables and
columns in your current database when it starts up. mysql remembers this information to provide name completion
capabilities that are useful for entering statements with fewer keystrokes:

o Type in a partial database, table, or column name and then hit the Tab key.

o If the partial name is unique, mysqgl completes it for you. Otherwise, you can hit Tab again to see the

possible matches.
« Enter additional characters and hit Tab again once to complete it or twice to see the new set of matches.

mysql's name auto-completion capability is based on the table names in the current database, and thus is
unavailable within a mysql session until a database has been selected, either on the command line or by means of a
USE statement.

Auto-completion allows you to cut down the amount of typing you do. However, if you don't use this feature,
reading name-completion information from the MySQL server may be counterproductive because it can cause
mysql to start up more slowly when you have a lot of tables in your database. To tell mysql not to read this
information so that it starts up more quickly, specify the -A (or --no-auto-rehash) option on the mysql command
line. Alternatively, put a no-auto-rehash line in the [mysql] group of your MySQL option file:

[mysql]
no-auto-rehash

To force mysqgl to read name completion information even if it was invoked in no-completion mode, issue a
REHASH or \# command at the mysql> prompt.

1.15 Using SQL Variables in Queries

1.15.1 Problem

You want to save a value from a query so you can refer to it in a subsequent query.
1.15.2 Solution

Use a SQL variable to store the value for later use.

1.15.3 Discussion

As of MySQL 3.23.6, you can assign a value returned by a SELECT statement to a variable, then refer to the
variable later in your mysgl session. This provides a way to save a result returned from one query, then refer to it
later in other queries. The syntax for assigning a value to a SQL variable within a SELECT query is @var_name :=
value, where var_name is the variable name and value is a value that you're retrieving. The variable may be used
in subsequent queries wherever an expression is allowed, such as in a WHERE clause or in an INSERT Statement.

A common situation in which SQL variables come in handy is when you need to issue successive queries on
multiple tables that are related by a common key value. Suppose you have a customers table with a cust_id
column that identifies each customer, and an orders table that also has a cust_id column to indicate which
customer each order is associated with. If you have a customer name and you want to delete the customer record as
well as all the customer's orders, you need to determine the proper cust_id value for that customer, then delete
records from both the customers and orders tables that match the ID. One way to do this is to first save the ID
value in a variable, then refer to the variable in the DELETE statements:

¥ 1n MySQL 4, you can use multiple-table DELETE statements to accomplish tasks like this with a single query. See Chapter 12 for examples.

mysqgl> SELECT @id := cust_id FROM customers WHERE cust_id=" customer name *;
mysql> DELETE FROM customers WHERE cust id = @id;
mysqgl> DELETE FROM orders WHERE cust_id = @id;

The preceding SELECT statement assigns a column value to a variable, but variables also can be assigned values
from arbitrary expressions. The following statement determines the highest sum of the arms and legs columns in
the Iimbs table and assigns it to the @max_Iimbs variable:

mysqgl> SELECT @max_limbs := MAX(arms+legs) FROM limbs;

Another use for a variable is to save the result from LAST_INSERT_ID() after creating a new record in a table that
has an AUTO_INCREMENT column:

mysql> SELECT @last_id := LAST_INSERT_ID();

LAST_INSERT_ID() returns the value of the new AUTO_INCREMENT value. By saving it in a variable, you can refer
to the value several times in subsequent statements, even if you issue other statements that create their own
AUTO_INCREMENT values and thus change the value returned by LAST INSERT _ID(). This is discussed further in

Chapter 11.

SQL variables hold single values. If you assign a value to a variable using a statement that returns multiple rows,
the value from the last row is used:

mysql> SELECT @name := thing FROM limbs WHERE legs = O;

e +
| @Gname := thing |
o +
| squid |

| octopus |

| fish |

| phonograph |
o +
mysqgl> SELECT @name;
Fm +

| @name |
TR - +

| phonograph |
o +

If the statement returns no rows, no assignment takes place and the variable retains its previous value. If the
variable has not been used previously, that value is NULL:

mysql> SELECT @name2 := thing FROM limbs WHERE legs < O;
Empty set (0.00 sec)
mysql> SELECT @name2;

To set a variable explicitly to a particular value, use a SET statement. SET syntax uses = rather than := to assign the
value:

mysql> SET @sum = 4 + 7;
mysqgl> SELECT @sum;

Fom——— +
| @sum |
o +
| 11]
S +

A given variable's value persists until you assign it another value or until the end of your mysql session, whichever
comes first.

Variable names are case sensitive:

mysql> SET @x = 1; SELECT @x, @X;
+

—————— B
| ex | @x |
o o — +
I 1 | NULL |
Fom——— o —— +

SQL variables can be used only where expressions are allowed, not where constants or literal identifiers must be
provided. Although it's tempting to attempt to use variables for such things as table names, it doesn't work. For
example, you might try to generate a temporary table name using a variable as follows, but the result is only an
error message:

mysqgl> SET @tbl_name = CONCAT("tbl_",FLOOR(RAND()*1000000));

mysqgl> CREATE TABLE @tbl_name (int_col INT);

ERROR 1064 at line 2: You have an error in your SQL syntax near “@tbl_name
(int_col INT)" at line 1

SQL variables are a MySQL-specific extension, so they will not work with other database engines.

1.16 Telling mysql to Read Queries from a File
1.16.1 Problem

You want mysgl to read queries stored in a file so you don't have to enter them manually.
1.16.2 Solution

Redirect mysgl's input or use the SOURCE command.

1.16.3 Discussion

By default, the mysql program reads input interactively from the terminal, but you can feed it queries in batch
mode using other input sources such as a file, another program, or the command arguments. You can also use copy
and paste as a source of query input. This section discusses how to read queries from a file. The next few sections
discuss how to take input from other sources.

To create a SQL script for mysqgl to execute in batch mode, put your statements in a text file, then invoke mysql and
redirect its input to read from that file:

% mysql cookbook < filename

Statements that are read from an input file substitute for what you'd normally type in by hand, so they must be
terminated with semicolons (or \g), just as if you were entering them manually. One difference between interactive
and batch modes is the default output style. For interactive mode, the default is tabular (boxed) format. For batch
mode, the default is to delimit column values with tabs. However, you can select whichever output style you want
using the appropriate command-line options. See the section on selecting tabular or tab-delimited format later in

the chapter (Recipe 1.22).

Batch mode is convenient when you need to issue a given set of statements on multiple occasions, because then
you need not enter them manually each time. For example, batch mode makes it easy to set up cron jobs that run
with no user intervention. SQL scripts are also useful for distributing queries to other people. Many of the
examples shown in this book can be run using script files that are available as part of the accompanying recipes
source distribution (see Appendix A). You can feed these files to mysql in batch mode to avoid typing queries
yourself. A common instance of this is that when an example shows a CREATE TABLE statement that describes what
a particular table looks like, you'll find a SQL batch file in the distribution that can be used to create (and perhaps
load data into) the table. For example, earlier in the chapter, statements for creating and populating the Iimbs table
were shown. The recipes distribution includes a file limbs.sqgl that contains statements to do the same thing. The
file looks like this:

DROP TABLE IF EXISTS limbs;

CREATE TABLE limbs

(
thing
legs
arms

VARCHAR(20),
INT,
INT

what the thing is
number of legs it has
number of arms it has

)

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO

limbs
limbs
limbs
limbs
limbs
limbs
limbs
limbs
limbs
limbs
limbs
limbs

(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)
(thing, legs,arms)

VALUES("human®,2,2);
VALUES("insect”,6,0);
VALUES("squid®,0,10);
VALUES("octopus”®,0,8);
VALUES(" fish",0,0);
VALUES("centipede®,100,0);
VALUES("table®,4,0);
VALUES("armchair®,4,2);
VALUES (" phonograph*®,0,1);
VALUES("tripod*®,3,0);
VALUES("Peg Leg Pete®,1,2);
VALUES("space alien® ,NULL,NULL);

To execute the statements in this SQL script file in batch mode, change directory into the tables directory of the
recipes distribution where the table-creation scripts are located, then run this command:

% mysql cookbook < limbs.sql

You'll note that the script contains a statement to drop the table if it exists before creating it anew and loading it
with data. That allows you to experiment with the table without worrying about changing its contents, because you
can restore the table to its baseline state any time by running the script again.

The command just shown illustrates how to specify an input file for mysgl on the command line. As of MySQL
3.23.9, you can read a file of SQL statements from within a mysql session by using a SOURCE fi lename command
(or \. filename, which is synonymous). Suppose the SQL script file test.sgl contains the following statements:

SELECT NOW();
SELECT COUNT(*) FROM limbs;

You can execute that file from within mysqgl as follows:

mysqgl> SOURCE test.sql;

o +
| NOwW() I
o +
| 2001-07-04 10:35:08 |
o +
1 row in set (0.00 sec)
Fom e —_—— — +
| COUNT(®) |
TS . +
I 12 |
Fem o +

1 row in set (0.01 sec)

SQL scripts can themselves include SOURCE or \. commands to include other scripts. The danger of this is that it's
possible to create a source loop. Normally you should take care to avoid such loops, but if you're feeling
mischievous and want to create one deliberately to find out how deep mysqgl can nest input files, here's how to do it.
First, issue the following two statements manually to create a counter table to keep track of the source file depth
and initialize the nesting level to zero:

mysgl> CREATE TABLE counter (depth INT);
mysqgl> INSERT INTO counter SET depth = O;

Then create a script file loop.sqgl that contains the following lines (be sure each line ends with a semicolon):

UPDATE counter SET depth = depth + 1;
SELECT depth FROM counter;
SOURCE loop.sql;

Finally, invoke mysgl and issue a SOURCE command to read the script file:
% mysql cookbook
mysql> SOURCE loop-.sqgl;

The first two statements in loop.sql increment the nesting counter and display the current depth value. In the third
statement, loop.sql sources itself, thus creating an input loop. You'll see the output whiz by, with the counter
display incrementing each time through the loop. Eventually mysql will run out of file descriptors and stop with an
error:

ERROR:
Failed to open File "loop.sql®, error: 24

What is error 24? Find out by using MySQL's perror (print error) utility:

% perror 24
Error code 24: Too many open Files

1.17 Telling mysql to Read Queries from Other Programs
1.17.1 Problem

You want to shove the output from another program into mysql.

1.17.2 Solution

Use a pipe.

1.17.3 Discussion

An earlier section used the following command to show how mysql can read SQL statements from a file:

% mysql cookbook < limbs.sql

mysql can also read a pipe, to receive output from other programs as its input. As a trivial example, the preceding
command is equivalent to this one:

% cat limbs.sql | mysql cookbook

Before you tell me that I've qualified for this week's "useless use of cat award,"= allow me to observe that you can
substitute other commands for cat. The point is that any command that produces output consisting of semicolon-
terminated SQL statements can be used as an input source for mysqgl. This can be useful in many ways. For
example, the mysqldump utility is used to generate database backups. It writes a backup as a set of SQL statements

that recreate the database, so to process mysgldump output, you feed it to mysgl. This means you can use the
combination of mysqldump and mysql to copy a database over the network to another MySQL server:

B Under Windows, the equivalent would be the "useless use of type award":

% mysqldump cookbook | mysql -h some.other_host.com cookbook

Program-generated SQL also can be useful when you need to populate a table with test data but don't want to write
the INSERT statements by hand. Instead, write a short program that generates the statements and send its output to
mysql using a pipe:

% generate-test-data | mysql cookbook

1.17.4 See Also

mysqgldump is discussed further in Chapter 10.

1.18 Specifying Queries on the Command Line
1.18.1 Problem

You want to specify a query directly on the command line for mysqgl to execute.
1.18.2 Solution

mysqgl can read a query from its argument list. Use the -e (or --execute) option to specify a query on the command
line.

1.18.3 Discussion

For example, to find out how many records are in the 1imbs table, run this command:

% mysql -e "SELECT COUNT(*) FROM limbs' cookbook

o +
| COUNT(™) |
o +
| 12 |
o +

To run multiple queries with the -e option, separate them with semicolons:

v mysql -e imbs; cookboo
% mysql "SELECT COUNT(*) FROM limbs;SELECT NOw()™ kbook

o +
| COUNT(™) |
o +
| 12 |
o +

1.18.4 See Also

By default, results generated by queries that are specified with -e are displayed in tabular format if output goes to
the terminal, and in tab-delimited format otherwise. To produce a different output style, see Recipe 1.22.

1.19 Using Copy and Paste as a mysql Input Source
1.19.1 Problem

You want to take advantage of your graphical user interface (GUI) to make mysql easier to use.
1.19.2 Solution

Use copy and paste to supply mysql with queries to execute. In this way, you can take advantage of your GUI's
capabilities to augment the terminal interface presented by mysql.

1.19.3 Discussion

Copy and paste is useful in a windowing environment that allows you to run multiple programs at once and
transfer information between them. If you have a document containing queries open in a window, you can just
copy the queries from there and paste them into the window in which you're running mysqgl. This is equivalent to

typing the queries yourself, but often quicker. For queries that you issue frequently, keeping them visible in a
separate window can be a good way to make sure they're always at your fingertips and easily accessible.

1.20 Preventing Query Output from Scrolling off the Screen
1.20.1 Problem

Query output zooms off the top of your screen before you can see it.

1.20.2 Solution

Tell mysql to display output a page at a time, or run mysgl in a window that allows scrollback.

1.20.3 Discussion

If a query produces many lines of output, normally they just scroll right off the top of the screen. To prevent this,

tell mysql to present output a page at a time by specifying the --pager option.® --pager=program tells mysql to use
a specific program as your pager:

151 The --pager option is not available under Windows.

% mysql --pager=/usr/bin/less

--pager by itself tells mysgl to use your default pager, as specified in your PAGER environment variable:

% mysql --pager

If your PAGER variable isn't set, you must either define it or use the first form of the command to specify a pager
program explicitly. To define PAGER, use the instructions in Recipe 1.9 for setting environment variables.

Within a mysql session, you can turn paging on and off using \P and \n. \P without an argument enables paging
using the program specified in your PAGER variable. \P with an argument enables paging using the argument as the
name of the paging program:

mysql> \P

PAGER set to /bin/more
mysgl> \P /usr/bin/less
PAGER set to Zusr/bin/less
mysqgl> \n

PAGER set to stdout

Output paging was introduced in MySQL 3.23.28.

Another way to deal with long result sets is to use a terminal program that allows you to scroll back through
previous output. Programs such as xterm for the X Window System, Terminal for Mac OS X, MacSSH or
BetterTelnet for Mac OS, or Telnet for Windows allow you to set the number of output lines saved in the
scrollback buffer. Under Windows NT, 2000, or XP, you can set up a DOS window that allows scrollback using
the following procedure:

1. Open the Control Panel.

2. Create a shortcut to the MS-DOS prompt by right clicking on the Console item and dragging the mouse to
where you want to place the shortcut (on the desktop, for example).

3. Right click on the shortcut and select the Properties item from the menu that appears.

4. Select the Layout tab in the resulting Properties window.

5. Set the screen buffer height to the number of lines you want to save and click the OK button.

Now you should be able to launch the shortcut to get a scrollable DOS window that allows output produced by
commands in that window to be retrieved by using the scrollbar.

1.21 Sending Query Output to a File or to a Program
1.21.1 Problem

You want to send mysgl output somewhere other than to your screen.

1.21.2 Solution
Redirect mysql's output or use a pipe.
1.21.3 Discussion

mysql chooses its default output format according to whether you run it interactively or non-interactively. Under
interactive use, mysgl normally sends its output to the terminal and writes query results using tabular format:

mysqgl> SELECT * FROM limbs;

+

I

+

| human |
| insect |
| squid |
| octopus |
| Fish |
| centipede |
| table |
| armchair |
| phonograph |
| tripod |
| Peg Leg Pete |
| space alien |
+

=

o
rPWORMAPMOOOQOON
————————— —— — - —

—————— B T
12 rows in set (0.00 sec)

In non-interactive mode (that is, when either the input or output is redirected), mysql writes output in tab-delimited
format:

% echo "SELECT * FROM limbs"™ | mysql cookbook

thing legs arms
human 2 2

insect 6 0

squid 0 10
octopus O 8

fish 0 0
centipede 100 0
table 4 0
armchair 4 2
phonograph 0 1
tripod 3 0

Peg Leg Pete 1 2
space alien NULL NULL

However, in either context, you can select any of mysqgl's output formats by using the appropriate command-line
options. This section describes how to send mysqgl output somewhere other than the terminal. The next several
sections discuss the various mysql output formats and how to select them explicitly according to your needs when
the default format isn't what you want.

To save output from mysql in a file, use your shell's standard redirection capability:

% mysql cookbook > outputfile

However, if you try to run mysql interactively with the output redirected, you won't be able to see what you're
typing, so generally in this case you'll also take query input from a file (or another program):

% mysql cookbook < inputfile > outputfile

You can also send query output to another program. For example, if you want to mail query output to someone,
you might do so like this:

% mysql cookbook < inputfile | mail paul

Note that because mysql runs non-interactively in that context, it produces tab-delimited output, which the mail
recipient may find more difficult to read than tabular output. Recipe 1.22 shows how to fix this problem.

1.22 Selecting Tabular or Tab-Delimited Query Output Format
1.22.1 Problem

mysql produces tabular output when you want tab-delimited output, or vice versa.

1.22.2 Solution

Select the desired format explicitly with the appropriate command-line option.

1.22.3 Discussion

When you use mysql non-interactively (such as to read queries from a file or to send results into a pipe), it writes
output in tab-delimited format by default. Sometimes it's desirable to produce tabular output instead. For example,

if you want to print or mail query results, tab-delimited output doesn't look very nice. Use the -t (or --table) option
to produce tabular output that is more readable:

% mysql -t cookbook < 1inputfile | Ipr
% mysql -t cookbook < 1inputfile | mail paul

The inverse operation is to produce batch (tab-delimited) output in interactive mode. To do this, use -B or --batch.

1.23 Specifying Arbitrary Output Column Delimiters
1.23.1 Problem

You want mysgl to produce query output using a delimiter other than tab.

1.23.2 Solution
Postprocess mysql's output.
1.23.3 Discussion

In non-interactive mode, mysql separates output columns with tabs and there is no option for specifying the output
delimiter. Under some circumstances, it may be desirable to produce output that uses a different delimiter. Suppose
you want to create an output file for use by a program that expects values to be separated by colon characters (:)
rather than tabs. Under Unix, you can convert tabs to arbitrary delimiters by using utilities such as tr and sed. For
example, to change tabs to colons, any of the following commands would work (TAB indicates where you type a
tab character):

"I The syntax for some versions of tr may be different; consult your local documentation. Also, some shells use the tab character for special purposes such as filename completion. For
such shells, type a literal tab into the command by preceding it with Ctrl-V.

% mysql cookbook < inputfile | sed -e s/ TAB /:/g" > outputfile
% mysql cookbook < inputfile | tr '™ TAB ™ ":" > outputfile
% mysql cookbook < inputfile | tr \011" *:™ > outputfile

sed is more powerful than tr because it understands regular expressions and allows multiple substitutions. This is
useful when you want to produce output in something like comma-separated values (CSV) format, which requires
three substitutions:

o Escape any quote characters that appear in the data by doubling them so that when you use the resulting
CSV file, they won't be taken as column delimiters.

e Change the tabs to commas.

e Surround column values with quotes.

sed allows all three subsitutions to be performed in a single command:
% mysql cookbook < inputfile \
| sed -e "s/"/""/g" -e "s/ TAB /","/g" -e "s/™/"/" -e "s/$/"/" > outputfile

That's fairly cryptic, to say the least. You can achieve the same result with other languages that may be easier to
read. Here's a short Perl script that does the same thing as the sed command (it converts tab-delimited input to CSV
output), and includes comments to document how it works:

#1 /Jusr/bin/perl -w

while (<>) # read next input line
{
s/"/"/g; # double any quotes within column values
s/\t/","/g; # put ~","" between column values
s/ ; # add """ before the first value
s/$/"/; # add """ after the last value
print; # print the result

}
exit (0);

If you name the script csv.pl, you can use it like this:

% mysql cookbook < inputfile | csv.pl > outputfile

If you run the command under a version of Windows that doesn't know how to associate .pl files with Perl, it may
be necessary to invoke Perl explicitly:

C:\> mysql cookbook < 1inputfile | perl csv.pl > outputfile

Perl may be more suitable if you need a cross-platform solution, because it runs under both Unix and Windows. tr
and sed normally are unavailable under Windows.

1.23.4 See Also
An even better way to produce CSV output is to use the Perl Text::CSV_XS module, which was designed for that

purpose. This module is discussed in Chapter 10, where it's used to construct a more general-purpose file
reformatter.

1.24 Producing HTML Output
1.24.1 Problem

You'd like to turn a query result into HTML.

1.24.2 Solution

mysql can do that for you.

1.24.3 Discussion

mysql generates result set output as HTML tables if you use -H (or --html) option. This gives you a quick way to
produce sample output for inclusion into a web page that shows what the result of a query looks like.® Here's an
example that shows the difference between tabular format and HTML table output (a few line breaks have been

added to the HTML output to make it easier to read):

1 'm referring to writing static HTML pages here. If you're writing a script that produces web pages on the fly, there are better ways to generate HTML output from a query. For more
information on writing web scripts, see Chapter 16.

% mysql -e "SELECT * FROM limbs WHERE legs=0" cookbook

e S T —— S T ——— +
| thing | legs | arms |
Fom e — R R +
squid	0	10
octopus	(Ol	8
Fish	0	0
phonograph	0	1]
Fom e — R R +

% mysql -H -e "SELECT * FROM limbs WHERE legs=0" cookbook
<TABLE BORDER=1>

<TR><TH>thing</TH><TH>legs</TH><TH>arms</TH></TR>
<TR><TD>squid</TD><TD>0</TD><TD>10</TD></TR>
<TR><TD>octopus</TD><TD>0</TD><TD>8</TD></TR>
<TR><TD>Fish</TD><TD>0</TD><TD>0</TD></TR>
<TR><TD>phonograph</TD><TD>0</TD><TD>1</TD></TR>

</TABLE>

The first line of the table contains column headings. If you don't want a header row, see Recipe 1.26.

The -H and --html options produce output only for queries that generate a result set. No output is written for
queries such as INSERT or UPDATE Statements.

-H and --html may be used as of MySQL 3.22.26. (They actually were introduced in an earlier version, but the
output was not quite correct.)

1.25 Producing XML Output
1.25.1 Problem
You'd like to turn a query result into XML.
1.25.2 Solution
mysql can do that for you.

1.25.3 Discussion

mysql creates an XML document from the result of a query if you use the -X (or --xml) option. Here's an example
that shows the difference between tabular format and the XML created from the same query:

% mysql -e "SELECT * FROM limbs WHERE legs=0" cookbook
TR - Fom——— Fom——— +

| thing | legs | arms |
TR - S — T — +
squid	0	10
octopus	0	8
fish	0	0
phonograph	0	1]
TR . T — T —- +

% mysql -X -e "SELECT * FROM limbs WHERE legs=0" cookbook
<?xml version="1.0"?>

<resultset statement="SELECT * FROM limbs WHERE legs=0">
<row>
<thing>squid</thing>
<legs>0</legs>
<arms>10</arms>
</row>

<row>
<thing>octopus</thing>
<legs>0</legs>

<arms>8</arms>
</row>

<row>
<thing>fish</thing>
<legs>0</legs>
<arms>0</arms>
</row>

<row>
<thing>phonograph</thing>
<legs>0</legs>
<arms>1</arms>
</row>
</resultset>

-X and --xml may be used as of MySQL 4.0. If your version of MySQL is older than that, you can write your own
XML generator. See Recipe 10.42.

1.26 Suppressing Column Headings in Query Output
1.26.1 Problem

You don't want to include column headings in query output.

1.26.2 Solution

Turn column headings off with the appropriate command-line option. Normally this is -N or --skip-column-names,
but you can use -ss instead.

1.26.3 Discussion

Tab-delimited format is convenient for generating datafiles that you can import into other programs. However, the
first row of output for each query lists the column headings by default, which may not always be what you want.
Suppose you have a program named summarize the produces various descriptive statistics for a column of
numbers. If you're producing output from mysql to be used with this program, you wouldn't want the header row
because it would throw off the results. That is, if you ran a command like this, the output would be inaccurate
because summarize would count the column heading:

% mysql -e "SELECT arms FROM limbs' cookbook | summarize

To create output that contains only data values, suppress the column header row with the -N (or --skip-column-
names) option:

% mysql -N -e "SELECT arms FROM limbs™ cookbook | summarize

-N and --skip-column-names were introduced in MySQL 3.22.20. For older versions, you can achieve the same
effect by specifying the "silent” option (-s or --silent) twice:

% mysql -ss -e "SELECT arms FROM limbs'" cookbook | summarize

Under Unix, another alternative is to use tail to skip the first line:

% mysql -e "SELECT arms FROM limbs"™ cookbook | tail +2 | summarize

1.27 Numbering Query Output Lines
1.27.1 Problem

You'd like the lines of a query result nicely numbered.

1.27.2 Solution

Postprocess the output from mysgl, or use a SQL variable.
1.27.3 Discussion

The -N option can be useful in combination with cat -n when you want to number the output rows from a query
under Unix:

% mysql -N -e "SELECT thing, arms FROM limbs" cookbook | cat -n
human 2

insect O

squid 10
octopus 8

fish 0
centipede 0
table 0
armchair 2
phonograph 1
10 tripod O

11 Peg Leg Pete 2
12 NULL

O©CO~NOOOITA~AWNPE

Another option is to use a SQL variable. Expressions involving variables are evaluated for each row of a query
result, a property that you can use to provide a column of row numbers in the output:

mysql> SET @n = O;
mysqgl> SELECT @n := @n+1 AS rownum, thing, arms, legs FROM limbs;

+
I
______________ [—
human |

I
squid |
octopus |
fish |
centipede |

————— — - —
>
%)
@
O
r+

7	table	0	4
8	armchair	2] 4	
9	phonograph	1] 0	
10	tripod	0	31
11	Peg Leg Pete	2] 1]	
12	space alien	NULL	NULL
Fom——_—— - o o —— [+

1.28 Making Long Output Lines More Readable
1.28.1 Problem

The output lines from a query are too long. They wrap around and make a mess of your screen.

1.28.2 Solution
Use vertical output format.

1.28.3 Discussion

Some queries generate output lines that are so long they take up more than one line on your terminal, which can
make query results difficult to read. Here is an example that shows what excessively long query output lines might
look like on your screen:®

I Prior to MySQL 3.23.32, omit the FULL keyword from the SHOW COLUMNS statement.

mysqgl> SHOW FULL COLUMNS FROM limbs;

o o o — S T T —— gy
———————— +

| Field | Type | Null | Key | Default | Extra | Privileges

o —— l ————————————— o —— R o —— T e
———————— +

| thing | varchar(20) | YES | | NULL | | select,insert,update,ref
erences |

| legs | int(11) | YES | | NULL | | select,insert,update,ref
erences |

| arms | int(11) | YES | | NULL | | select,insert,update,ref
erences |

o —_—— o o —— [T o o ——_—— ey
———————— +

An alternative is to generate "vertical™ output with each column value on a separate line. This is done by
terminating a query with \G rather than with a ; character or with \g. Here's what the result from the preceding
query looks like when displayed using vertical format:

mysql> SHOW FULL COLUMNS FROM Iimbs\G
Field: thing
Type: varchar(20)
Null: YES
Key:

Default: NULL
Extra:
Privileges: select, insert,update,references

R T S o e e S e S e S S S S e S e S e S e S e e o 2_
Field:
Type:

Null:

Key:
Default:
Extra:
Privileges:

row FEAIAIAAXAXAAAXAAAXAXAAXAAAAXAAAAAAXK
legs

int(11)

YES

NULL

select, insert,update,references

L R e e S e

Field:
Type:

Null:

Key:
Default:
Extra:
Privileges:

e R e :3

row
arms

int(11)

YES

NULL

select, insert,update,references

To specify vertical output from the command line, use the -E (or --vertical) option when you invoke mysql. This
affects all queries issued during the session, something that can be useful when using mysql to execute a script. (I
you write the statements in the SQL script file using the usual semicolon terminator, you can select normal or
vertical output from the command line by selective use of -E.)

1.29 Controlling mysql's Verbosity Level
1.29.1 Problem
You want mysgl to produce more output. Or less.
1.29.2 Solution
Use the -v or -s options for more or less verbosity.
1.29.3 Discussion
When you run mysgl non-interactively, not only does the default output format change, it becomes more terse. For
example, mysgl doesn't print row counts or indicate how long queries took to execute. To tell mysgl to be more

verbose, use -v or --verbose. These options can be specified multiple times for increasing verbosity. Try the
following commands to see how the output differs:

% echo "SELECT NOW()™ | mysql

% echo "SELECT NOW()™ | mysql -v

% echo "SELECT NOW()™ | mysql -vv
% echo "SELECT NOW()™ | mysql -vwvv

The counterparts of -v and --verbose are -s and --silent. These options too may be used multiple times for increased
effect.

1.30 Logging Interactive mysqgl Sessions
1.30.1 Problem

You want to keep a record of what you did in a mysgl session.

1.30.2 Solution

Create a tee file.

1.30.3 Discussion

If you maintain a log of an interactive MySQL session, you can refer back to it later to see what you did and how.
Under Unix, you can use the script program to save a log of a terminal session. This works for arbitrary
commands, so it works for interactive mysgl sessions, too. However, script also adds a carriage return to every line
of the transcript, and it includes any backspacing and corrections you make as you're typing. A method of logging
an interactive mysql session that doesn't add extra messy junk to the log file (and that works under both Unix and
Windows) is to start mysgl with a --tee option that specifies the name of the file in which to record the session:

[jt's called a "tee” because it's similar to the Unix tee utility. For more background, try this command:

% mysql --tee=tmp.out cookbook

To control session logging from within mysgl, use \T and \t to turn tee output on and off. This is useful if you
want to record only parts of a session:

mysql> \T tmp.out
Logging to file "tmp.out”®
mysqgl> \t

Outfile disabled.

A tee file contains the queries you enter as well as the output from those queries, so it's a convenient way to keep a
complete record of them. It's useful, for example, when you want to print or mail a session or parts of it, or for
capturing query output to include as an example in a document. It's also a good way to try out queries to make sure
you have the syntax correct before putting them in a script file; you can create the script from the tee file later by
editing it to remove everything except those queries you want to keep.

mysgl appends session output to the end of the tee file rather than overwriting it. If you want an existing file to
contain only the contents of a single session, remove it first before invoking mysql.

The ability to create tee files was introduced in MySQL 3.23.28.

1.31 Creating mysql Scripts from Previously Executed Queries
1.31.1 Problem
You want to reuse queries that were issued during an earlier mysgl session.

1.31.2 Solution

Use a tee file from the earlier session, or look in mysql's statement history file.

1.31.3 Discussion

One way to create a batch file is to enter your queries into the file from scratch with a text editor and hope that you
don't make any mistakes while typing them. But it's often easier to use queries that you've already verified as
correct. How? First, try out the queries "by hand" using mysgl in interactive mode to make sure they work
properly. Then, extract the queries from a record of your session to create the batch file. Two sources of
information are particularly useful for creating SQL scripts:

e You can record all or parts of a mysqgl session by using the --tee command-line option or the \T command
from within mysql. (See Recipe 1.30 for more information.)

« Under Unix, a second option is to use your history file. mysql maintains a record of your queries, which it
stores in the file .mysqgl_history in your home directory.

A tee file session log has more context because it contains both query input and output, not just the text of the
queries. This additional information can make it easier to locate the parts of the session you want. (Of course, you
must also remove the extra stuff to create a batch file from the tee file.) Conversely, the history file is more

concise. It contains only of the queries you issue, so there are fewer extraneous lines to delete to obtain the queries
you want. Choose whichever source of information best suits your needs.

1.32 Using mysql as a Calculator
1.32.1 Problem

You need a quick way to evaluate an expression.

1.32.2 Solution

Use mysql as a calculator. MySQL doesn't require every SELECT statement to refer to a table, so you can select the
results of arbitrary expressions.

1.32.3 Discussion

SELECT statements typically refer to some table or tables from which you're retrieving rows. However, in MySQL,
SELECT need not reference any table at all, which means that you can use the mysgl program as a calculator for
evaluating an expression:

mysql> SELECT (17 + 23) / SQRT(64);

This is also useful for checking how a comparison works. For example, to determine whether or not string
comparisons are case sensitive, try the following query:

mysqgl> SELECT "ABC" = "abc”;

o +
| "ABC" = "abc" |
S +
| 1]
o +

The result of this comparison is 1 (meaning "true™; in general, nonzero values are true). This tells you that string
comparisons are not case sensitive by default. Expressions that evaluate to false return zero:

mysql> SELECT "ABC®" = "abcd®;

Ty +
| "ABC" = "abcd® |
Ry +
I 01
PRy +

If the value of an expression cannot be determined, the result is NULL:

mysqgl> SELECT 1/0;

SQL variables may be used to store the results of intermediate calculations. The following statements use variables
this way to compute the total cost of a hotel bill:

mysql> SET @daily_room charge = 100.00;

mysql> SET @num_of nights = 3;

mysgl> SET @tax_percent = 8;

mysql> SET @total room charge = @daily_room _charge * @num_of nights;
mysqgl> SET @tax = (@total_room_charge * @tax_percent) / 100;

mysql> SET @total = @total_room_charge + @tax;

mysql> SELECT @total;

1.33 Using mysql in Shell Scripts
1.33.1 Problem

You want to invoke mysql from within a shell script rather than using it interactively.

1.33.2 Solution

There's no rule against that. Just be sure to supply the appropriate arguments to the command.

1.33.3 Discussion

If you need to process query results within a program, you'll typically use a MySQL programming interface
designed specifically for the language you're using (for example, in a Perl script you'd use the DBI interface). But
for simple, short, or quick-and-dirty tasks, it may be easier just to invoke mysql directly from within a shell script,
possibly postprocessing the results with other commands. For example, an easy way to write a MySQL server
status tester is to use a shell script that invokes mysqgl, as is demonstrated later in this section. Shell scripts are also
useful for prototyping programs that you intend to convert for use with a standard API later.

For Unix shell scripting, | recommend that you stick to shells in the Bourne shell family, such as sh, bash, or ksh.
(The csh and tcsh shells are more suited to interactive use than to scripting.) This section provides some examples
showing how to write Unix scripts for /bin/sh. It also comments briefly on DOS scripting. The sidebar "Using
Executable Programs™ describes how to make scripts executable and run them.

Sidebar 3. Using Executable Programs

When you write a program, you'll generally need to make it executable before you can run it. In Unix,
you do this by setting the "execute" file access modes using the chmod command:

% chmod +x myprog

To run the program, name it on the command line:

% myprog

However, if the program is in your current directory, your shell might not find it. The shell searches for
programs in the directories named in your PATH environment variable, but for security reasons, the
search path for Unix shells often is deliberately set not to include the current directory (.). In that case,
you need to include a leading path of ./ to explicitly indicate the program's location:

% ./myprog

Some of the programs developed in this book are intended only to demonstrate a particular concept and

probably never will be run outside your current directory, so examples that use them generally show
how to invoke them using the leading ./ path. For programs that are intended for repeated use, it's
more likely that you'll install them in a directory named in your PATH setting. In that case, no leading
path will be necessary to invoke them. This also holds for common Unix utilities (such as chmod),
which are installed in standard system directories.

Under Windows, programs are interpreted as executable based on their filename extensions (such as
.exe or .bat), so chmod is unnecessary. Also, the command interpreter includes the current directory in
its search path by default, so you should be able to invoke programs that are located there without
specifying any leading path. (Thus, if you're using Windows and you want to run an example command
that is shown in this book using ./, you should omit the ./ from the command.)

1.33.4 Writing Shell Scripts Under Unix

Here is a shell script that reports the current uptime of the MySQL server. It runs a SHOW STATUS query to get the
value of the Uptime status variable that contains the server uptime in seconds:

#1 /bin/sh
mysql_uptime.sh - report server uptime in seconds

mysgl -B -N -e "SHOW STATUS LIKE “Uptime-""

The first line of the script that begins with #1 is special. It indicates the pathname of the program that should be
invoked to execute the rest of the script, /bin/sh in this case. To use the script, create a file named mysqgl_uptime.sh
that contains the preceding lines and make it executable with chmod +x. The mysql_uptime.sh script runs mysqgl
using -e to indicate the query string, -B to generate batch (tab-delimited) output, and -N to suppress the column
header line. The resulting output looks like this:

% -/mysql_uptime.sh
Uptime 1260142

The command shown here begins with ./, indicating that the script is located in your current directory. If you
move the script to a directory named in your PATH setting, you can invoke it from anywhere, but then you should
omit the ./ from the command. Note that moving the script make cause csh or tcsh not to know where the script is
located until your next login. To remedy this without logging in again, use rehash after moving the script. The
following example illustrates this process:

% -/mysql_uptime.sh

Uptime 1260348

% mv mysql _uptime.sh Zusr/local/bin
% mysql_uptime.sh

mysql_uptime.sh: Command not found.
% rehash

% mysql_uptime.sh

Uptime 1260397

If you prefer a report that lists the time in days, hours, minutes, and seconds rather than just seconds, you can use
the output from the mysql STATUS statement, which provides the following information:

mysql> STATUS;

Connection id: 12347

Current database: cookbook

Current user: cbuser@localhost

Current pager: stdout

Using outfile: "

Server version: 3.23.47-1og

Protocol version: 10

Connection: Localhost via UNIX socket
Client characterset: latinl

Server characterset: latinl

UNIX socket:
Uptime:

/tmp/mysql . sock
14 days 14 hours 2 min 46 sec

For uptime reporting, the only relevant part of that information is the line that begins with Uptime. It's a simple
matter to write a script that sends a STATUS command to the server and filters the output with grep to extract the
desired line:

#1 /bin/sh
mysqgl_uptime2.sh - report server uptime

mysql -e STATUS | grep "~Uptime'

The result looks like this:

% ./mysql_uptime2.sh

Uptime: 14 days 14 hours 2 min 46 sec

The preceding two scripts specify the statement to be executed by means of the -e command-line option, but you
can use other mysql input sources described earlier in the chapter, such as files and pipes. For example, the
following mysqgl_uptime3.sh script is like mysql_uptime2.sh but provides input to mysqgl using a pipe:

#1 /bin/sh
mysql_uptime3.sh - report server uptime

echo STATUS | mysql | grep "~Uptime"

Some shells support the concept of a "here-document,” which serves essentially the same purpose as file input to a
command, except that no explicit filename is involved. (In other words, the document is located "right here" in the
script, not stored in an external file.) To provide input to a command using a here-document, use the following
syntax:

command <<MARKER
input line 1
input line 2
input line 3

MARKER

<<MARKER signals the beginning of the input and indicates the marker symbol to look for at the end of the input.
The symbol that you use for MARKER is relatively arbitrary, but should be some distinctive identifier that does not
occur in the input given to the command.

Here-documents are a useful alternative to the -e option when you need to specify lengthy query input. In such
cases, when -e becomes awkward to use, a here-document is more convenient and easier to write. Suppose you
have a log table 1og_tbl that contains a column date_added to indicate when each row was added. A query to
report the number of records that were added yesterday looks like this:

SELECT COUNT(*) As "New log entries:*
FROM log_tbl
WHERE date_added = DATE_SUB(CURDATE(), INTERVAL 1 DAY);

That query could be specified in a script using -e, but the command line would be difficult to read because the
query is so long. A here-document is a more suitable choice in this case because you can write the query in more
readable form:

#1 /bin/sh
new_log_entries.sh - count yesterday®s log entries

mysqgl cookbook <<MYSQL_INPUT

SELECT COUNT(*) As "New log entries:*

FROM log_tbl

WHERE date_added = DATE_SUB(CURDATE(), INTERVAL 1 DAY);
MYSQL_ INPUT

When you use -e or here-documents, you can refer to shell variables within the query input—although the
following example demonstrates that it might be best to avoid the practice. Suppose you have a simple script
count_rows.sh for counting the rows of any table in the cookbook database:

#1 /bin/sh
count_rows.sh - count rows in cookbook database table

require one argument on the command line
it [$# -ne 1]; then
echo "Usage: count_rows.sh tbl_name";
exit 1;
fi

use argument ($1) in the query string
mysqgl cookbook <<MYSQL_INPUT

SELECT COUNT(*) AS "Rows in table:" FROM $1;
MYSQL__INPUT

The script uses the $# shell variable, which holds the command-line argument count, and $1, which holds the first
argument after the script name. count_rows.sh makes sure that exactly one argument was provided, then uses it as
a table name in a row-counting query. To run the script, invoke it with a table name argument:

% ./count_rows.sh limbs
Rows in table:
12

Variable substitution can be helpful for constructing queries, but you should use this capability with caution. A
malicious user could invoke the script as follows:

% ./count_rows.sh "limbs;DROP TABLE limbs"

In that case, the resulting query input to mysgl becomes:

SELECT COUNT(*) AS "Rows in table:" FROM limbs;DROP TABLE limbs;

This input counts the table rows, then destroys the table! For this reason, it may be prudent to limit use of variable
substitution to your own private scripts. Alternatively, rewrite the script using an API that allows special characters
such as ; to be dealt with and rendered harmless (see Recipe 2.8).

1.33.5 Writing Shell Scripts Under Windows

Under Windows, you can run mysql from within a batch file (a file with a .bat extension). Here is a Windows batch
file, mysqgl_uptime.bat, that is similar to the mysqgl_uptime.sh Unix shell script shown earlier:

@ECHO OFF
REM mysql_uptime.bat - report server uptime in seconds

mysgl -B -N -e "SHOW STATUS LIKE “Uptime-""

Batch files may be invoked without the .bat extension:

C:\> mysql_uptime
Uptime 9609

DOS scripting has some serious limitations, however. For example, here-documents are not supported, and
command argument quoting capabilities are more limited. One way around these problems is to install a more
reasonable working environment; see the sidebar "Finding the DOS Prompt Restrictive?"

Sidebar 4. Finding the DOS Prompt

Restrictive?

If you're a Unix user who is comfortable with the shells and utilities that are part of the Unix
command-line interface, you probably take for granted some of the commands used in this chapter,
such as grep, sed, tr, and tail. These tools are so commonly available on Unix systems that it can be a
rude and painful shock to realize that they are nowhere to be found if at some point you find it
necessary to work at the DOS prompt under Windows.

One way to make the DOS command-line environment more palatable is to install Cygnus tools for
Windows (Cygwin) or Unix for Windows (UWIN). These packages include some of the more popular
Unix shells as well as many of the utilities that Unix users have come to expect. Programming tools
such as compilers are available with each package as well. The package distributions may be obtained
at the following locations:

http://www.cygwin.com/

http://www.research.att.com/sw/tools/uwin/

These distributions can change the way you use this book under Windows, because they eliminate
some of the exceptions where | qualify commands as available under Unix but not Windows. By
installing Cygwin or UWIN, many of those distinctions become irrelevant.

Chapter 2. Writing MySQL-Based Programs

Section 2.1. Introduction

Section 2.2. Connecting to the MySOL Server, Selecting a Database, and Disconnecting

Section 2.3. Checking for Errors

Section 2.4. Writing Library Files

Section 2.5. Issuing Queries and Retrieving Results

Section 2.6. Moving Around Within a Result Set

Section 2.7. Using Prepared Statements and Placeholders in Queries

Section 2.8. Including Special Characters and NULL Values in Queries

Section 2.9. Handling NULL Values in Result Sets

Section 2.10. Writing an Object-Oriented MySOQL Interface for PHP

Section 2.11. Ways of Obtaining Connection Parameters

Section 2.12. Conclusion and Words of Advice

2.1 Introduction

This chapter discusses how to write programs that use MySQL. It covers basic APl operations that are fundamental
to your understanding of the recipes in later chapters, such as connecting to the MySQL server, issuing queries,
and retrieving the results.

2.1.1 MySQL Client Application Programming Interfaces

This book shows how to write MySQL-based programs using Perl, PHP, Python, and Java, and it's possible to use
several other languages as well. But one thing all MySQL clients have in common, no matter which language you
use, is that they connect to the server using some kind of application programming interface (API) that implements
a communications protocol. This is true regardless of the program's purpose, whether it's a command-line utility, a
job that runs automatically on a predetermined schedule, or a script that's used from a web server to make database
content available over the Web. MySQL APIs provide a standard way for you, the application developer, to
express database operations. Each API translates your instructions into something the MySQL server can
understand.

The server itself speaks a low-level protocol that I call the raw protocol. This is the level at which direct
communication takes place over the network between the server and its clients. A client establishes a connection to
the port on which the server is listening and communicates with it by speaking the client-server protocol in its most
basic terms. (Basically, the client fills in data structures and shoves them over the network.) It's not productive to
attempt to communicate directly with the server at this level (see the sidebar Want to Telnet to the MySQL
Server?"), nor to write programs that do so. The raw protocol is a binary communication stream that is efficient,
but not particularly easy to use, a fact that usually deters developers from attempting to write programs that talk to
the server this way. More convenient access to the MySQL server is provided through a programming interface
that is written at a level above that of the raw protocol level. The interface handles the details of the raw protocol
on behalf of your programs. It provides calls for operations such as connecting to the server, sending queries,
retrieving the results of queries, and obtaining query status information.

Java drivers implement this low-level protocol directly. They plug into the Java Database Connectivity (JDBC)
interface, so you write your programs using standard JDBC calls. JDBC passes your requests for database
operations to the MySQL driver, which maps them into operations that communicate with the MySQL server using
the raw protocol.

The MySQL drivers for Perl, PHP, and Python adopt a different approach. They do not implement the raw protocol
directly. Instead, they rely on the MySQL client library that is included with MySQL distributions. This client
library is written in C and thus provides the basis of an application programming interface for communicating with
the server from within C programs. Most of the standard clients in the MySQL distribution are written in C and use
this API. You can use it in your own programs, too, and should consider doing so if you want the most efficient
programs possible. However, most third-party application development is not done in C. Instead, the C API is most
often used indirectly as an embedded library within other languages. This is how MySQL communication is
implemented for Perl, PHP, Python, and several other languages. The API for these higher-level languages is
written as a "wrapper" around the C routines, which are linked into the language processor.

The benefit of this approach is that it allows a language processor to talk to the MySQL server on your behalf
using the C routines while providing to you an interface in which you express database operations more
conveniently. For example, scripting languages such as Perl typically make it easy to manipulate text without
having to allocate string buffers or dispose of them when you're done with them the way you do in C. Higher-level

languages let you concentrate more on what you're trying to do and less on the details that you must think about
when you're writing directly in C.

This book doesn't cover the C API in any detail, because we never use it directly; the programs developed in this
book use higher-level interfaces that are built on top of the C API. However, if you'd like to try writing MySQL
client programs in C, the following sources of information may be helpful:

The MySQL Reference Manual contains a chapter that provides a reference for the C API functions. You
should also have a look at the source for the standard MySQL clients provided with the MySQL source
distribution that are written in C. Source distributions and the manual both are available at the MySQL web
site, http://www.mysgl.com/, and you can obtain the manual in printed form from O'Reilly & Associates.
The book MySQL (New Riders) contains reference material for the C API, and also includes a chapter that
provides detailed tutorial instructions for writing MySQL programs in C. In fact, you needn't even buy the
book to get this particular chapter; it's available in PDF form at http://www.Kkitebird.com/mysql-book/. The
source code for the sample programs discussed in the chapter is available from the same site for you to
study and use. These programs were deliberately written for instructional purposes, so you may find them
easier to understand than the standard clients in the MySQL source distribution.

Some networking protocols such as SMTP and POP are ASCII based. This makes it possible to talk
directly to a server for those protocols by using Telnet to connect to the port on which the server is
listening and typing in commands from the keyboard. Because of this, people sometimes assume that it
should also be possible to communicate with the MySQL server the same way: by opening a Telnet
connection to it and entering commands. That doesn't work, due to the binary nature of the raw
protocol that the server uses. You can verify this for yourself. Suppose the MySQL server is running on
the local host and listening on the default port (3306). Connect to it using the following command:

% telnet localhost 3306

You'll see something that looks like a version number, probably accompanied by a bunch of gibberish
characters. What you're seeing is the raw protocol. You can't get very far by communicating with the
server in this fashion, which is why the answer to the common question, "How can | Telnet to the
MySQL server?" is, "Don't bother.” The only thing you can find out this way is whether or not the
server is up and listening for connections on the port.

Sidebar 1. Want to Telnet to the MySQL

Server?

MySQL client APIs provide the following capabilities, each of which is covered in this chapter:

Connecting to the MySQL server; selecting a database; disconnecting from the server.

Every program that uses MySQL must first establish a connection to the server, and most programs also
will specify which database to use. Some APIs expect the database name to be supplied at connect time
(which is why connecting and selecting are covered in the same section). Others provide an explicit call for

selecting the database. In addition, well-behaved MySQL programs close the connection to the server when
they're done with it.

Checking for errors.

Many people write MySQL programs that perform no error checking at all, which makes them difficult to
debug when things go wrong. Any database operation can fail and you should know how to find out when
that occurs and why. This is necessary so that you can take appropriate action such as terminating the
program or informing the user of the problem.

Issuing queries and retrieving results.

The whole point of connecting to a database server is to run queries. Each API provides at least one way to
issue queries, as well as several functions for processing the results of queries. Because of the many options
available to you, this section is easily the most extensive of the chapter.

Using prepared statements and placeholders in queries.

One way to write a query that refers to specific data values is to embed the values directly in the query
string. Most APIs provide another mechanism that allows you to prepare a query in advance that refers to
the data values symbolically. When you execute the statement, you supply the data values separately and
the API places them into the query string for you.

Including special characters and NULL values in queries.

Some characters such as quotes and backslashes have special meaning in queries, and you must take certain
precautions when constructing queries containing them. The same is true for NULL values. If you do not
handle these properly, your programs may generate SQL statements that are erroneous or that yield
unexpected results. This section discusses how to avoid these problems.

Handling NULL values in result sets.

NULL values are special not only when you construct queries, but in results returned from queries. Each API
provides a convention for dealing with them.

To write your own programs, it's necessary to know how to perform each of the fundamental database API
operations no matter which language you use, so each one is shown in each of our languages (PHP, Perl, Python,
and Java). Seeing how each API handles a given operation should help you see the correspondences between APIs
more easily and facilitate understanding of recipes shown in the following chapters, even if they're written in a
language you don't use very much. (Later chapters usually illustrate recipe implementations using just one or two
languages.)

I recognize that it may seem overwhelming to see each recipe in four different languages if you're interested only
in one particular API. In that case, | advise you to approach the recipes as follows: read just the introductory part
that provides the general background, then go directly to the section for the language in which you're interested.
Skip the other languages. Should you develop an interest in writing programs in other languages later, you can
always come back and read the other sections then.

This chapter also discusses the following topics, which are not directly part of MySQL APIs but can help you use
them more easily:

Writing library files.

As you write program after program, you may find that there are certain operations you carry out
repeatedly. Library files provide a way to encapsulate the code for these operations so that you can perform
them from multiple scripts without including all the code in each script. This reduces code duplication and
makes your programs more portable. This section shows how to write a library file for each API that
includes a function for connecting to the server—one operation that every program that uses MySQL must
perform. (Later chapters develop additional library routines for other operations.)

Writing an object-oriented MySQL interface for PHP.

The APIs for Perl, Python, and Java each are class-based and provide an object-oriented programming
model based on a database-independent architecture. PHP's built-in interface is based on MySQL-specific
function calls. The section describes how to write a PHP class that can be used to take an object-oriented
approach to developing MySQL scripts.

Ways of obtaining connection parameters.
The earlier section on establishing connections to the MySQL server relies on connection parameters

hardwired into the code. However, there are several other ways to obtain parameters, ranging from storing
them in a separate file to allowing the user to specify them at runtime.

To avoid typing in the example programs, you should obtain the recipes source distribution (see Appendix A).
Then when an example says something like "create a file named xyz that contains the following information . . . "
you can just use the corresponding file from the recipes distribution. The scripts for this chapter are located under
the api directory, with the exception of the library files, which can be found in the lib directory.

The primary table used for examples in this chapter is named profile. It's created in Recipe 2.5, which you should
know in case you skip around in the chapter and wonder where it came from. See also the note at the very end of
the chapter about resetting the profi le table to a known state for use in other chapters.

2.1.2 Assumptions

Several assumptions should be satisfied for the material in this chapter to be used most effectively:

You should have MySQL support installed for any language processors you plan to use. If you need to
install any of the APIs, see Appendix A.

You should already have set up a MySQL user account for accessing the server and a database to use for
trying out queries. As described in Chapter 1, the examples use a MySQL account with a name and
password of cbuser and cbpass, and we'll connect to a MySQL server running on the local host to access a
database named cookbook. If you need to create the account or the database, see the instructions in that
chapter.

The recipes assume a certain basic understanding of the API languages. If a recipe uses constructs with
which you're not familiar, consult a good general text for the language in which you're interested. Appendix
C lists some sources that may be helpful.

e Proper execution of some of the programs may require that you set environment variables that control their
behavior. See Recipe 1.9 for details about how to do this.

2.2 Connecting to the MySQL Server, Selecting a Database, and
Disconnecting

2.2.1 Problem

You need to establish a connection to the server to access a database, and to shut down the connection when you're
done.

2.2.2 Solution

Each API provides functions for connecting and disconnecting. The connection routines require that you provide
parameters specifying the MySQL user account you want to use. You can also specify a database to use. Some
APIs allow this at connection time; others require a separate call after connecting.

2.2.3 Discussion

The programs in this section show how to perform three fundamental operations that are common to the vast
majority of MySQL programs:

o Establishing a connection to the MySQL server.

Every program that uses MySQL does this, no matter which API you use. The details on specifying
connection parameters vary between APIs, and some APIs provide more flexibility than others. However,
there are many common elements. For example, you must specify the host where the server is running, as
well as the name and password for the MySQL account that you're using to access the server.

o Selecting a database.
Most MySQL programs select a database, either when they connect to the server or immediately thereafter.
« Disconnecting from the server

Each API provides a means of shutting down an open connection. It's best to close the connection as soon
as you're done with the server so that it can free up any resources that are allocated to servicing the
connection. Otherwise, if your program performs additional computations after accessing the server, the
connection will be held open longer than necessary. It's also preferable to close the connection explicitly. If
a program simply terminates without closing the connection, the MySQL server eventually notices, but
shutting down the connection explicitly allows the server to perform an orderly close on its end
immediately.

Our example programs for each API in this section show how to connect to the server, select the cookbook
database, and disconnect. However, on occasion you might want to write a MySQL program that doesn't select a

database. This would be the case if you plan to issue a query that doesn't require a default database, such as SHow
VARIABLES or SHOW DATABASES. Or perhaps you're writing an interactive program that connects to the server and
allows the user to specify the database after the connection has been made. To cover such situations, the discussion
for each API also indicates how to connect without selecting any database.

Sidebar 2. The Meaning of localhost in
My SQL

One of the parameters you specify when connecting to a MySQL server is the host where the server is
running. Most programs treat the hostname localhost and the IP address 127.0.0.1 as synonymous.
Under Unix, MySQL programs behave differently; by convention, they treat the hostname localhost
specially and attempt to connect to the server using a Unix domain socket file. To force a TCP/IP
connection to the local host, use the IP address 127.0.0.1 rather than the hostname localhost. (Under
Windows, localhost and 127.0.0.1 are treated the same, because Windows doesn't have Unix domain
sockets.)

The default port is 3306 for TCP/IP connections. The pathname for the Unix domain socket varies,
although it's often /tmp/mysgl.sock. The recipes indicate how to specify the socket file pathname or
TCP/IP port number explicitly if you don't want to use the default.

2.2.4 Perl

To write MySQL scripts in Perl, you should have the DBI module installed, as well as the MySQL-specific DBI
driver module, DBD::mysql. Appendix A contains information on getting these if they're not already installed.
There is an older interface for Perl named MysqlPerl, but it's obsolete and is not covered here.

Here is a simple Perl script that connects to the cookbook database, then disconnects:

#1 /usr/bin/perl -w
connect.pl - connect to the MySQL server

use strict;

use DBI;
my $dsn = "DBI:mysql :host=localhost;database=cookbook";
my $dbh = DBI->connect ($dsn, *‘cbuser', *cbpass')

or die "Cannot connect to server\n';
print "Connected\n';
$dbh->disconnect ();
print "Disconnected\n';
exit (0);

To try the script, create a file named connect.pl that contains the preceding code. To run connect.pl under Unix,
you may need to change the pathname on the first line if your Perl program is located somewhere other than
lusr/bin/perl. Then make the script executable with chmod +x, and invoke it as follows:

% chmod +x connect.pl

% ./connect.pl
Connected
Disconnected

Under Windows, chmod will not be necessary; you run connect.pl like this:

C:\> perl connect.pl
Connected
Disconnected

If you have a filename association set up that allows .pl files to be executed directly from the command line, you
need not invoke Perl explicitly:

C:\> connect.pl
Connected
Disconnected

For more information on running programs that you've written yourself, see the sidebar "Using Executable
Programs™ in Recipe 1.33.

The -w option turns on warning mode so that Perl produces warnings for any questionable constructs. Our example
script has no such constructs, but it's a good idea to get in the habit of using -w; as you modify your scripts during
the development process, you'll often find that Perl has useful comments to make about them.

The use strict line turns on strict variable checking and causes Perl to complain about any variables that are used
without having been declared first. This is a sensible precaution because it helps find errors that might otherwise
go undetected. The use DBI statement tells Perl that the program needs to use the DBI module. It's unnecessary to
load the MySQL driver module (DBD::mysql) explicitly, because DBI will do that itself when the script connects
to the database server.

The next two lines establish the connection to MySQL by setting up a data source name (DSN) and calling the DBI
connect() method. The arguments to connect() are the DSN, the MySQL username, the password, and any
connection attributes you want to specify. The DSN is required. The other arguments are optional, although usually
it's necessary to supply a name and password to get very far.

The DSN specifies which database driver to use and other options indicating where to connect. For MySQL
programs, the DSN has the format DB :mysgl -options. The three components of which have the following
meanings:

e The first component is always DBI. It's not case sensitive; dbi or Dbi would do just as well.

e The second component tells DBI which database driver to use. For MySQL, the name must be mysqgl and it
IS case sensitive. You can't use MySQL, MYSQL, or any other variation.

e The third component, if present, is a semicolon-separated list of name=value pairs specifying additional
connection options. The order of any options you provide doesn't matter. For our purposes here, the two
most relevant options are host and database. They specify the hostname where the MySQL server is
running and the database you want to use. Note that the second colon in the DSN is not optional, even if
you don't specify any options.

Given this information, the DSN for connecting to the cookbook database on the local host localhost looks like
this:

DBI:mysqgl :host=localhost;database=cookbook

If you leave out the host option, its default value is localhost. Thus, these two DSNSs are equivalent:

DBI:mysql :host=localhost;database=cookbook
DBI :mysql : database=cookbook

If you omit the database option, no database is selected when you connect.

The second and third arguments of the connect() call are your MySQL username and password. You can also
provide a fourth argument following the password to specify attributes that control DBI's behavior when errors
occur. By default, DBI prints error messages when errors occur but does not terminate your script. That's why
connect.pl checks whether connect() returns undef to indicate failure:

my $dbh = DBI->connect ($dsn, "cbuser', 'cbpass')
or die ""Cannot connect to server\n';

Other error-handling strategies are possible. For example, you can tell DBI to terminate the script automatically
when an error occurs in a DBI call by disabling the PrintError attribute and enabling RaiseError instead. Then
you don't have to check for errors yourself:

my $dbh = DBI->connect ($dsn, $user name, $password,

{PrintError => 0, RaiseError => 1});

Error handling is discussed further in Recipe 2.3.
Assuming that connect() succeeds, it returns a database handle that contains information about the state of the
connection. (In DBI parlance, references to objects are called "handles.") Later we'll see other handles, such as

statement handles that are associated with particular queries. DBI scripts in this book conventionally use $dbh and
$sth to signify database and statement handles.

2.2.4.1 Additional connection parameters

For connections to localhost, you can provide a mysql_socket option in the DSN to specify the path to the Unix
domain socket:

my $dsn = "DBI:mysql :host=localhost;mysql_socket=/var/tmp/mysql .sock"
. "";database=cookbook™;

The mysql_socket option is available as of MySQL 3.21.15.

For non-localhost connections, you can provide a port option to specify the port number:

my $dsn = "DBI:mysqgl :host=mysql .snake.net;port=3307;database=cookbook"";

2.2.5 PHP

To write PHP scripts that use MySQL, your PHP interpreter must have MySQL support compiled in. If it doesn't,
your scripts will terminate with an error message like this:

Fatal error: Call to undefined function: mysql connect()

Should that occur, check the instructions included with your PHP distribution to see how to enable MySQL
support.

PHP scripts usually are written for use with a web server. I'll assume that if you're going to use PHP that way here,
you can simply drop PHP scripts into your server's document tree, request them from your browser, and they will
execute. For example, if you run Apache as the web server on the host http://apache.snake.net/ and you install a
PHP script myscript.php at the top level of the Apache document tree, you should be able to access the script by
requesting this URL.:

http://apache.snake.net/myscript.php

This book uses the .php extension (suffix) for PHP script filenames. If you use a different extension, such as .php3
or .phtml, you'll need to change the script names or else reconfigure your web server to recognize the .php
extension. Otherwise, when you request a PHP script from your browser, the literal text of the script will appear in
your browser window. You don't want this to happen, particularly if the script contains the username and password
you use for connecting to MySQL. (For additional information about configuring Apache for use with PHP, see

Recipe 16.3.)

PHP scripts often are written as a mixture of HTML and PHP code, with the PHP code embedded between the
special <?php and 2> tags. Here is a simple example:

<html>
<head><title>A simple page</title></head>
<body>
<p>
<?php
print ('l am PHP code, hear me roar!\n');
?>
</p>
</body>
</html>

For brevity, when | show PHP examples consisting entirely of code, typically I'll omit the enclosing <?php and 2>
tags. Examples that switch between HTML and PHP code include the tags.

To use MySQL in a PHP script, you connect to the MySQL server and select a database in two steps, by calling the
mysqgl_connect() and mysql_select_db() functions. Our first PHP script, connect.php, shows how this
works:

connect.php - connect to the MySQL server

it (1 ($conn_id = @mysqgl _connect (“localhost", "cbuser', 'cbpass'™)))
die ('Cannot connect to server\n');

print ("'Connected\n™);

it (1@mysql_select_db (‘“'cookbook™, $conn_id))
die ("'Cannot select database\n');

mysql_close ($conn_id);

print ('Disconnected\n™);

mysql_connect() takes three arguments: the host where the MySQL server is running, and the name and
password of the MySQL account you want to use. If the connection attempt succeeds, mysqgl_connect() returns
a connection identifier that can be passed to other MySQL-related functions later. PHP scripts in this book
conventionally use $conn_id to signify connection identifiers.

If the connection attempt fails, mysql_connect() prints a warning and returns FALSE. (The script prevents any
such warning by putting @ (the warning-suppression operator) in front of the function name so it can print its own
message instead.)

mysqgl_select_db() takes the database name and an optional connection identifier as arguments. If you omit the
second argument, the function assumes it should use the current connection (that is, the one most recently opened).
The script just shown calls mysql_select_db() immediately after it connects, so the following calls are
equivalent:

if (1@mysql_select_db (‘“'cookbook™, $conn_id))
die ("Cannot select database\n™);

ifT (1@mysql_select_db ('cookbook™))
die ('Cannot select database\n™);

If mysql_select_db() selects the database successfully, it returns TRUE. Otherwise, it prints a warning and
returns FALSE. (Again, as with the mysql_connect() call, the script uses the @ operator to suppress the warning.)
If you don't want to select any database, just omit the call to mysql_select_db().

To try the connect.php script, copy it to your web server's document tree and request it from your browser.
Alternatively, if you have a standalone version of the PHP interpreter that can be run from the command line, you
can try the script without a web server or browser:

% php -q connect.php
Connected
Disconnected

PHP actually provides two functions for connecting to the MySQL server. The script connect.php uses
mysqgl_connect(), but you can use mysql_pconnect() instead if you want to establish a persistent connection
that doesn't close when the script terminates. This allows the connection to be reused by subsequent PHP scripts
run by the web server, thus avoiding the overhead of setting up a new connection. However, MySQL is so efficient
at opening connections that you might not notice much difference between the two functions. Also, you should
consider that use of mysql_pconnect() sometimes results in too many connections being left open. A symptom
of this is that the MySQL server stops accepting new connections because so many persistent connections have

been opened by web server processes. Using mysql_connect() rather than mysql_pconnect() may help to
avoid this problem.

2.2.5.1 Additional connection parameters

For connections to localhost, you can specify a pathname for the Unix domain socket by adding
:/path/to/socket to the hostname in the connect call:

$hostname = "localhost:/var/tmp/mysql .sock';
it (1($conn_id = @mysqgl_connect ($hostname, ‘‘cbuser', 'cbpass'™)))
die ('Cannot connect to server\n');

For non-localhost, connections, you can specify a port number by adding :port_num to the hostname:

$hostname = "mysql.snake.net:3307";
it (1($conn_id = @mysqgl_connect ($hostname, ‘‘cbuser', 'cbpass'™)))
die ('Cannot connect to server\n');

The socket pathname option is available as of PHP 3.0.B4. The port number option is available as of PHP 3.0.10.

In PHP 4, you can use the PHP initialization file to specify a default hostname, username, password, socket path,
or port number by setting the values of the mysqgl .default_host, mysql .default_user,
mysqgl .default_password, mysql .default_socket, or mysql .default_port configuration directives.

2.2.6 Python

To write MySQL programs in Python, you need the MySQLdb module that provides MySQL connectivity for
Python's DB-API interface. If you don't have this module, see Appendix A for instructions. DB-API, like Perl's
DBI module, provides a relatively database-independent way to access database servers, and supplants earlier
Python DBMS-access modules that each had their own interfaces and calling conventions. This book doesn't cover
the older, obsolete MySQL Python interface.

Python avoids the use of functions that return a special value to indicate the occurrence of an error. In other words,
you typically don't write code like this:

if (funcl () == some_bad value or func2 () == another_bad_value):
print "An error occurred”

else:
print "No error occurred"

Instead, put the statements you want to execute in a try block. Errors cause exceptions to be raised that you can
catch with an except block containing the error handling code:

try:
funcl ()
func2 ()
except:
print "An error occurred"

Exceptions that occur at the top level of a script (that is, outside of any try block) are caught by the default
exception handler, which prints a stack trace and exits.

To use the DB-API interface, import the database driver module you want to use (which is MySQLdb for MySQL
programs). Then create a database connection object by calling the driver's connect() method. This object
provides access to other DB-API methods, such as the close() method that severs the connection to the database
server. Here is a short Python program, connect.py, that illustrates these operations:

#1 /usr/bin/python
connect.py - connect to the MySQL server

import sys
import MySQLdb

try:
conn = MySQLdb.connect (db = "cookbook",
host = "localhost™,
user = "‘cbuser’,
passwd = '‘cbpass')

print ""Connected”

except:
print "Cannot connect to server"”
sys.exit (1)

conn.close ()
print ""Disconnected"
sys.exit (0)

The import lines give the script access to the sys module (needed for the sys.exit() function) and to the
MySQLdb module. Then the script attempts to establish a connection to the MySQL server by calling connect()
to obtain a connection object, conn. Python scripts in this book conventionally use conn to signify connection
objects.

If the connection cannot be established, an exception occurs and the script prints an error message. Otherwise, it
closes the connection by using the close() method.

Because the arguments to connect() are named, their order does not matter. If you omit the host argument from
the connect() call, its default value is localhost. If you leave out the db argument or pass a db value of *'** (the
empty string), no database is selected. If you pass a value of None, however, the call will fail.

To try the script, create a file called connect.py containing the code just shown. Under Unix, you may need to
change the path to Python on the first line of the script if your Python interpreter is located somewhere other than
/usr/bin/python. Then make the script executable with chmod +x and run it:

% chmod +x connect.py
% ./connect.py
Connected
Disconnected

Under Windows, run the script like this:

C:\> python connect.py
Connected
Disconnected

If you have a filename association set up that allows .py files to be executed directly from the command line, you
need not invoke Python explicitly:

C:\> connect.py
Connected
Disconnected

2.2.6.1 Additional connection parameters

For connections to localhost, you can provide a unix_socket parameter to specify the path to the Unix domain
socket:

conn = MySQLdb.connect (db = *cookbook™,
host = "localhost",
unix_socket = ""/var/tmp/mysql .sock",
user = "‘cbuser’,
passwd = "‘cbpass™)

For non-localhost connections, you can provide a port parameter to specify the port number:

conn = MySQLdb.connect (db = "cookbook",

host = "mysqgl .snake.net",
port = 3307,

user = "cbuser",

passwd = '‘cbpass')

2.2.7 Java

Database programs in Java are written using the JDBC interface, in conjunction with a driver for the particular
database engine you wish to access. This makes the JDBC architecture similar to that used by the Perl DBI and
Python DB-API modules: a generic interface used in conjunction with database-specific drivers. Java itself is
similar to Python in that you don't test specific function calls for return values that indicate an error. Instead, you
provide handlers that are called when exceptions are thrown.

Java programming requires a software development kit (SDK). See the sidebar, Installing a Java SDK for
instructions on installing one if you need it. To write MySQL-based Java programs, you'll also need a MySQL-
specific JDBC driver. Several are listed in Appendix A. I use the MySQL Connector/J driver because it is free and
is actively maintained; use one of the other drivers if you prefer. (MySQL Connector/J is the successor to
MM.MySQL, and if you already have MM.MySQL installed, you can use it instead by making a simple change:
whenever you see org.gjt.mm.mysql in Java code, replace it with com.mysql . jdbc.)

Sidebar 3. Installing a Java SDK

java.sun.com makes Java SDKs available for Solaris, Linux, and Windows, but you may already have
the necessary tools installed, or they may be available by another means. For example, Mac OS X
includes javac, jikes, and other support needed for building Java applications in the Developer Tools
distribution available at connect.apple.com.

If a Java SDK is not already installed on your system, get one from java.sun.com, install it, and set the
JAVA_HOME environment variable to the pathname where the SDK is installed. Examples shown here
assume an SDK installation directory of /usr/local/java/jdk for Unix and D:\jdk for Windows, so the
commands for setting JAVA_HOME look like this:

export JAVA HOME=/usr/local/java/jdk (sh, bash, etc.)
setenv JAVA HOME=/usr/local/java/jdk (csh, tcsh, etc.)
set JAVA_HOME=D:\jdk (Windows)

Adjust the instructions appropriately for the pathname used on your system. To make environment
variable changes take effect, log out and log in again under Unix, or restart under Windows. For more
information on setting environment variables, see Recipe 1.9.

The following Java program, Connect.java, illustrates how to connect to and disconnect from the MySQL server:

// Connect.java - connect to the MySQL server
import java.sqgl.*;

public class Connect

{
public static void main (String[] args)

{

Connection conn = null;
String url = "jdbc:mysql://localhost/cookbook;

String userName = '‘cbuser";
String password = '‘cbpass';
try

{

Class.forName ('com.mysqgl.jdbc.Driver'™) ._newlnstance ();
conn = DriverManager.getConnection (url, userName, password);
System.out.println (""Connected);

catch (Exception e)

{
System.err.println (“'Cannot connect to server');
g
finally
{

if (conn = null)

{
try

conn.close ();
System.out.println (*'Disconnected™);

catch (Exception e) { /* ignore close errors */ }

The import java.sql .* statement references the classes and interfaces that provide access to the data types you
use to manage different aspects of your interaction with the database server. These are required for all JDBC
programs.

Connecting to the server is a two-step process. First, register the database driver with JDBC by calling
Class.forName(). Then call DriverManager.getConnection() to initiate the connection and obtain a
Connection object that maintains information about the state of the connection. Java programs in this book
conventionally use conn to signify connection objects.

Use com.mysql . jdbc.Driver for the name of the MySQL Connector/J JDBC driver. If you use a different driver,
check its documentation and use the name specified there. DriverManager.getConnection() takes three
arguments: a URL describing where to connect and the database to use, the MySQL username, and the password.
The format of the URL string is as follows:

jdbc:driver://host_name/db_name

This format follows the usual Java convention that the URL for connecting to a network resource begins with a
protocol designator. For JDBC programs, the protocol is jdbc, and you'll also need a subprotocol designator that
specifies the driver name (mysql, for MySQL programs). Many parts of the connection URL are optional, but the
leading protocol and subprotocol designators are not. If you omit host_name, the default host value is localhost.
If you omit the database name, no database is selected when you connect. However, you should not omit any of the
slashes in any case. For example, to connect to the local host without selecting a database name, the URL is:

Jjdbc:-mysql:///

To try out the program, you should compile it and execute it. The class statement indicates the program's name,
which in this case is Connect. The name of the file containing the program should match this name and include a
Jjava extension, so the filename for the example program is Connect.java.x Compile the program using javac:

1 you make a copy of Connect.java to use as the basis for a new program, you'll need to change the class name in the C 1 2SS statement to match the name of your new file.

% javac Connect.java

If you prefer a different Java compiler, just substitute its name in compilation commands. For example, if you'd
rather use Jikes, compile the file like this instead:

% jikes Connect.java

javac (or jikes, or whatever) generates compiled byte code to produce a class file named Connect.class. Use the
java program to run the class file (note that you specify the name of the class file without the .class extension):

% java Connect
Connected
Disconnected

You may need to set your CLASSPATH environment variable before the example program will compile and run. The
value of CLASSPATH should include at least your current directory (.) and the path to the MySQL Connector/J
JDBC driver. On my system, that driver is located in /usr/local/lib/java/lib/mysgl-connector-java-bin.jar, so for
tcsh or csh, I'd set CLASSPATH like this:

setenv CLASSPATH .:/usr/local/lib/java/lib/mysgl-connector-java-bin.jar

For shells such as sh, bash, and ksh, I'd set it like this:

export CLASSPATH=.:/usr/local/lib/java/lib/mysgl-connector-java-bin.jar

Under Windows, I'd set CLASSPATH as follows if the driver is in the D:\Java\lib directory:

CLASSPATH=. ;D:\Java\lib\mysgl-connector-java-bin.jar

You may also need to add other class directories or libraries to your CLASSPATH setting; the specifics depend on
how your system is set up.

Sidebar 4. Beware of Class.forName()!

The example program Connect.java registers the JDBC driver like this:

Class.forName ('com.mysqgl.jdbc.Driver'™)_newlnstance ();

You're supposed to be able to register drivers without invoking newlnstance(), like so:

Class.forName (“'com.mysql.jdbc.Driver™);

However, that call doesn't work for some Java implementations, so be sure not to omit newlnstance(
), or you may find yourself enacting the Java motto, "write once, debug everywhere."

Some JDBC drivers (MySQL Connector/J among them) allow you to specify the username and password as
parameters at the end of the URL. In this case, you omit the second and third arguments of the getConnection()
call. Using that URL style, the code that establishes the connection in the example program could have been
written like this:

// connect using username and password included in URL
Connection conn = null;
String url = "jdbc:mysql://localhost/cookbook?user=cbuseré&password=cbpass’;

try
{

Class.forName (‘com.mysql.jdbc.Driver™).newlnstance ();
conn = DriverManager.getConnection (url);
System.out.println (*Connected™);

The character that separates the user and password parameters should be &, not ;.
2.2.7.1 Additional connection parameters

For non-localhost connections, specify an explicit port number by adding :port_num to the hostname in the
connection URL.:

String url = “jdbc:mysqgl://mysgl.snake.net:3307/cookbook";

For connections to localhost, there is no option for specifying the Unix domain socket pathname, at least not for
MySQL Connector/J. Other MySQL JDBC drivers may allow for this; check their documentation.

2.3 Checking for Errors

2.3.1 Problem

Something went wrong with your program and you don't know what.

2.3.2 Solution

Everybody has problems getting programs to work correctly. But if you don't anticipate difficulties by checking for

errors, you make the job a lot harder. Add some error-checking code so your programs can help you figure out
what went wrong.

2.3.3 Discussion

You now know how to connect to the MySQL server. It's also a good idea to know how to check for errors and
how to retrieve MySQL-related error information from the API, so that's what we'll cover next. When errors occur,
MySQL provides a numeric error code and a corresponding descriptive text error message. The recipes in this
section show how to access this information. You're probably anxious to see how to do more interesting things
(such as issue queries and get back the results), but error checking is fundamentally important. Programs

sometimes fail, especially during development, and if you don't know how to determine why failures occur, you'll
be flying blind.

The example programs in this section show how to check for errors, but will in fact execute without any problems
if your MySQL account is set up properly. Thus, you may have to modify the examples slightly to force errors to
occur so that the error-handling statements are triggered. For example, you can change a connection-establishment
call to supply a bad password. This will give you a feel for how the code acts when errors do occur.

A general debugging aid that is not specific to any APl is to check the MySQL query log to see what queries the
server actually is receiving. (This requires that you have query logging turned on and that you have access to the
log on the MySQL server host.) The log often will show you that a query is malformed in a particular way and give
you a clue about why your program is not constructing the proper query string. If you're running a script under a
web server and it fails, check the server's error log.

2.3.4 Perl
The DBI module provides two attributes that control what happens when DBI method invocations fail:

e PrintError, if enabled, causes DBI to print an error message using warn().
e RaiseError, if enabled, causes DBI to print an error message using die(); this terminates your script.

By default, PrintError is enabled and RaiseError is disabled, so a script continues executing after printing a
message if errors occur. Either or both attributes can be specified in the connect() call. Setting an attribute to 1
or 0 enables or disables it, respectively. To specify either or both attributes, pass them in a hash reference as the
fourth argument to the connect() call. (The syntax is demonstrated shortly.)

The following code uses the default settings for the error-handling attributes. This results in a warning message if
the connect() call fails, but the script will continue executing:

my $dbh = DBI->connect ($dsn, '‘cbuser’, 'cbpass');

However, because you really can't do much if the connection attempt fails, it's often prudent to exit instead after
DBI prints a message:

my $dbh = DBI->connect ($dsn, 'cbuser', 'cbpass') or exit;

To print your own error messages, leave RaiseError disabled and disable PrintError as well. Then test the
results of DBI method calls yourself. When a method fails, the $DBI - err and $DBI - :errstr variables will
contain the MySQL numeric error code and descriptive error string, respectively:

my $dbh = DBI->connect ($dsn, 'cbuser', 'cbpass', {PrintError => 0})
or die "Connection error: $DBl::errstr ($DBl::err)\n*;

If no error occurs, $DBI : zerr will be 0 or undef, and $DBI : :errstr will be the empty string or undef.

When checking for errors, you should access these variables immediately after invoking the DBI method that sets
them. If you invoke another method before using them, their values will be reset.

The default settings (PrintError enabled, RaiseError disabled) are not so useful if you're printing your own
messages. In this case, DBI prints a message automatically, then your script prints its own message. This is at best
redundant, and at worst confusing to the person using the script.

If you enable RaiseError, you can call DBI methods without checking for return values that indicate errors. If a
method fails, DBI prints an error and terminates your script. If the method returns, you can assume it succeeded.
This is the easiest approach for script writers: let DBI do all the error checking! However, if PrintError and
RaiseError both are enabled, DBI may call warn() and die() in succession, resulting in error messages being
printed twice. To avoid this problem, it's best to disable PrintError whenever you enable RaiseError. That's the
approach generally used in this book, as illustrated here:

my $dbh = DBIl->connect ($dsn, ‘‘cbuser', 'cbpass",
{PrintError => 0, RaiseError => 1});

If you don't want the all-or-nothing behavior of enabling RaiseError for automatic error checking versus having
to do all your own checking, you can adopt a mixed approach. Individual handles have PrintError and
RaiseError attributes that can be enabled or disabled selectively. For example, you can enable RaiseError
globally by turning it on when you call connect(), then disable it selectively on a per-handle basis. Suppose you
have a script that reads the username and password from the command-line arguments, then loops while the user
enters queries to be executed. In this case you'd probably want DBI to die and print the error message
automatically if the connection fails (there's not much you can do if the user doesn't provide a valid name and
password). After connecting, on the other hand, you wouldn't want the script to exit just because the user enters a
syntactically invalid query. It would be better for the script to trap the error, print a message, then loop to get the
next query. The following code shows how this can be done (the do() method used in the example executes a
query and returns undef to indicate an error):

my $user_name = shift (@ARGVY);
my $password = shift (@ARGV);
my $dbh = DBI->connect ($dsn, $user_name, $password,
{PrintError => 0, RaiseError => 1});
$dbh->{RaiseError} = 0; # disable automatic termination on error
print "Enter queries to be executed, one per line; terminate with Control-D\n";
while (<>) # read and execute queries

$dbh->do ($) or warn "Query failed: $DBI::errstr ($DBl::err)\en’;

$dbh->{RaiseError} = 1; # re-enable automatic termination on error

If RaiseError is enabled, you can trap errors without terminating your program by executing code within an eval
block. If an error occurs within the block, eval fails and returns a message in the $@ variable. Typically, eval is
used something like this:

eval

{
statements that might fail go here...
}:

if (30)
{

}

print "An error occurred: $@\n";

This technique is commonly used, for example, to implement transactions. (See Chapter 15.) Using RaiseError in
combination with eval differs from using RaiseError alone in the following ways:

o Errors terminate only the eval block, not the entire script.
e Any error terminates the eval block, whereas RaiseError applies only to DBI-related errors.

When you use eval with RaiseError enabled, be sure to disable PrintError. Otherwise, in some versions of
DBI, an error may simply cause warn() to be called without terminating the eval block as you expect.

In addition to using the error-handling attributes PrintError and RaiseError, you can get lots of useful
information about your script's execution by turning on DBI's tracing mechanism. Invoke the trace() method
with an argument indicating the trace level. Levels 1 to 9 enable tracing with increasingly more verbose output,
and level O disables tracing:

DBI->trace (1); # enable tracing, minimal output
DBI->trace (3); # elevate trace level
DBI->trace (0); # disable tracing

Individual database and statement handles have trace() methods, too. That means you can localize tracing to a
single handle if you want.

Trace output normally goes to your terminal (or, in the case of a web script, to the web server's error log). You can
write trace output to a specific file by providing a second argument indicating a filename:

DBI->trace (1, "/tmp/trace.out™);

If the trace file already exists, trace output is appended to the end; the file's contents are not cleared first. Beware of
turning on a file trace while developing a script, then forgetting to disable the trace when you put the script into
production. You'll eventually find to your chagrin that the trace file has become quite large. (Or worse, a filesystem
will fill up and you'll have no idea why!)

2.3.5 PHP

In PHP, most functions that can succeed or fail indicate what happened by means of their return value. You can
check that value and take action accordingly. Some functions also print a warning message when they fail.
(mysqgl_connect() and mysql_select_db() both do this, for example.) Automatic printing of warnings can be
useful sometimes, but if the purpose of your script is to produce a web page (which is likely), you may not want
PHP to splatter these messages into the middle of the page. You can suppress such warnings two ways. First, to
prevent an individual function call from producing an error message, put the @ warning-suppression operator in
front of its name. Then test the return value and deal with errors yourself. That was the approach used for the
previous section on connecting to the MySQL server, where connect.php printed its own messages:

it (1 (Sconn_id = @mysql _connect (“localhost", 'cbuser', 'cbpass'™)))
die ('Cannot connect to server\n');

print ('Connected\n™);

iT (1@mysqgl_select_db (‘'cookbook™™, $conn_id))
die ("Cannot select database\n™);

Second, you can disable these warnings globally by using the error_reporting() function to set the PHP error
level to zero:

error_reporting (0);

However, be aware that by turning off warnings this way, you won't get any notification for things that are wrong
with your script that you really should know about, such as parse errors caused by malformed syntax.

To obtain specific error information about failed MySQL-related operations, use mysql_errno() and
mysql_error(), which return a numeric error code and descriptive error string. Each function takes an optional
connection identifier argument. If you omit the identifier, both functions assume you want error information for the
most recently opened connection. However, prior to PHP 4.0.6, both functions require that there is a connection.
For older versions of PHP, this requirement makes the error functions useless for reporting problems with the
connection-establishment routines. (If mysql_connect() or mysgl_pconnect() fail, mysql_errno() and
mysqgl_error() return 0 and the empty string, just as if no error had occurred.) To work around this, you can use
the PHP global variable $php_errormsg instead, as shown in the following example. The code shows how to print
error messages, both for failed connection attempts and for errors that occur subsequent to a successful connection.
For problems connecting, it attempts to use mysgl_errno() and mysqgl_error() if they return useful
information. Otherwise, it falls back to using $php_errormsg:

it (1($conn_id = @mysgl _connect (“'localhost", "cbuser', 'cbpass'™)))

{
1T mysqgl_errno()/mysgl_error() work for failed connections, use
them (invoke with no argument). Otherwise, use $php_errormsg.
it (mysql _errno ())
{
die (sprintf (“'Cannot connect to server: %s (%d)\n",
htmlspecialchars (mysgl_error ()),
mysql_errno ()));
}
else
{
die ('Cannot connect to server:
. htmlspecialchars ($php_errormsg) - "\n");
}
}

print ("'Connected\n™);
it (1@mysqgl_select db (‘“'cookbook'™, $conn_id))

die (sprintf ('Cannot select database: %s (%d)\n",
htmlspecialchars (mysql _error ($conn_id)),
mysql_errno ($conn_id)));

The htmlspecialchars() function escapes the <, >, and & characters so they display properly in web pages. It's
useful here when displaying error messages because we don't know what particular characters a message contains.

Use of $php_errormsg requires the track_errors variable to be enabled in your PHP initialization file. On my
system, that file is /usr/local/lib/php.ini. Locate the file on your system, then make sure the track_errors line
looks like this:

track_errors = On;

If you change the track_errors setting and you're using PHP as an Apache module, you'll need to restart Apache
to make the change take effect.

2.3.6 Python

Python programs signal errors by raising exceptions, and handle errors by catching exceptions in an except block.
To obtain MySQL-specific error information, name an exception class and provide a variable to receive the
information. Here's an example:

try:
conn = MySQLdb.connect (db = "cookbook",
host = "localhost",
user = "‘cbuser",
passwd = "‘cbpass')
print "Connected”
except MySQLdb.Error, e:
print "Cannot connect to server"”
print "Error code:', e.args[O0]
print "Error message:', e.args[1l]
sys.exit (1)

If an exception occurs, the first and second elements of e.args will be set to the numeric error code and
descriptive error message, respectively. (Note that the Error class is accessed through the MySQLdb driver
module name.)

2.3.7 Java

Java programs handle errors by catching exceptions. If you simply want to do the minimum amount of work, print
a stack trace to inform the user where the problem lies:

catch (Exception e)

{
}

e.printStackTrace ();

The stack trace shows the location of the problem, but not necessarily what the problem is. It may not be all that
meaningful except to you, the program's developer. To be more specific, you can print the error message and code
associated with an exception:

o All Exception objects support the getMessage() method. JDBC methods may throw exceptions using
SQLException objects; these are like Exception objects but also support getErrorCode() and
getSQLState() methods.

e For MySQL errors, getErrorCode() and getMessage() return the numeric error code and descriptive
error string.

e getSQLState() returns a string that provides error values defined according to the XOPEN SQL
specification (which you may or may not find useful).

e You can also get information about non-fatal warnings, which some methods generate using SQLWarning
objects. sQLWarning is a subclass of SQLException, but warnings are accumulated in a list rather than
thrown immediately, so they don't interrupt your program and you can print them at your leisure.

The following example program, Error.java, demonstrates how to access error messages by printing all the error
information it can get its hands on. It attempts to connect to the MySQL server and prints exception information if
the attempt fails. Then it issues a query and prints exception and warning information if the query fails:

// Error_java - demonstrate MySQL error-handling
import java.sql.*;

public class Error

{
public static void main (String[] args)

{

Connection conn = null;
String url = "jdbc:mysql://localhost/cookbook;

String userName = "‘cbuser";
String password = "cbpass™;
try

{

Class.forName (“'com.mysql.jdbc.Driver'™).newlnstance ();
conn = DriverManager.getConnection (url, userName, password);
System.out.println ('Connected™);

tryQuery (conn); // issue a query
}
catch (Exception e)
{
System.err._println (*'Cannot connect to server'™);
System.err._println (e);
if (e instanceof SQLException) // JDBC-specific exception?
{
// print general message plus any database-specific message
// (note how e is cast from Exception to SQLException to
// access the SQLException-specific methods)
System.err._println ('SQLException: " + e.getMessage ());
System.err.println ("'SQLState: "'
+ ((SQLException) e).getSQLState ());
System.err._println ('VendorCode: ™
+ ((SQLException) e).getErrorCode ());
}
}
finally

it (conn = null)

{
try

conn.close ();
System.out.println (*'Disconnected™);

}
catch (SQLException e)

{
// print general message plus any
// database-specific message
System.err._println ('SQLException: " + e.getMessage ());
System.err._println ('SQLState: " + e.getSQLState ());
System.err.println ("'VendorCode: " + e.getErrorCode ());
}
}
}
}
public static void tryQuery (Connection conn)
{
Statement s = null;
try
{
// issue a simple query
s = conn.createStatement ();
s.execute ("'USE cookbook™);
s.close ();
// print any accumulated warnings
SQLWarning w = conn.getWarnings ();
while (w = null)
{
System.err.println ('SQLWarning: " + w.getMessage ());
System.err._println ('SQLState: " + w.getSQLState ());
System.err._println ('VendorCode: "™ + w.getErrorCode ());
w = w.getNextWarning ();
}
catch (SQLException e)
// print general message plus any database-specific message
System.err.println ("'SQLException: " + e.getMessage ());
System.err.println ('SQLState: " + e.getSQLState ());
System.err._println ('VendorCode: " + e.getErrorCode ());
}
}

2.4 Writing Library Files
2.4.1 Problem

You notice that you're writing similar code for common operations in several programs.

2.4.2 Solution
Put functions to perform those operations in a library file. Then you write the code only once.
2.4.3 Discussion

This section describes how to put code for common operations in library files. Encapsulation (or modularization)
isn't really a "recipe™ so much as a programming technique. Its principal benefit is that you don't have to repeat
code in each program you write; instead, you just call a function that's in the library. For example, by putting the
code for connecting to the cookbook database into a library function, you need not write out all the parameters
associated with making that connection. Simply invoke the function from your program and you're connected.

Connection establishment isn't the only operation you can encapsulate, of course. Later on in the book, other utility
functions are developed and placed in library files. All such files, including those shown in this section, can be
found under the lib directory of the recipes distribution. As you write your own programs, you'll probably
identify several operations that you perform often and that are good candidates for inclusion in a library. The
techniques demonstrated in this section will help you write your own library files.

Library files have other benefits besides making it easier to write programs. They can help portability. For
example, if you write connection parameters into each program that connects to the MySQL server, you have to
change each program if you move them to another machine where you use different parameters. If instead you
write your programs to connect to the database by calling a library function, you localize the changes that need to
be made: it's necessary to modify only the affected library function, not all the programs that use it.

Code encapsulation also can improve security in some ways. If you make a private library file readable only to
yourself, only scripts run by you can execute routines in the file. Or suppose you have some scripts located in your
web server's document tree. A properly configured server will execute the scripts and send their output to remote
clients. But if the server becomes misconfigured somehow, the result can be that your scripts get sent to clients as
plain text, thus displaying your MySQL username and password. (And you'll probably realize it too late. Oops.) If
the code for establishing a connection to the MySQL server is placed in a library file that's located outside the
document tree, those parameters won't be exposed to clients. (Be aware, though, that if you install a library file to
be readable by your web server, you don't have much security should you share the web server with other
developers. Any of those developers can write a web script to read and display your library file, because by default
the script will run with the permissions of the web server and thus will have access to the library.)

The recipes that follow demonstrate how to write, for each API, a library file that contains a routine for connecting
to the cookbook database on the MySQL server. The Perl, PHP, and Python routines are written to return the
appropriate type of value (a database handle, a connection identifier, or connection object), or to exit with an error
message if the connection cannot be established. (The error-checking techniques used by these routines are those
discussed in Recipe 2.3.) The Java connection routine demonstrates a different approach. It returns a connection
object if it succeeds and otherwise throws an exception that the caller can deal with. To assist in handling such
exceptions, the library also includes utility functions that return or print an error message that includes the error
information returned by MySQL.

Libraries are of no use by themselves; the way that each one is used is illustrated by a short "test harness” program.
You can use any of these harness programs as the basis for creating new programs of your own: Make a copy of
the file and add your own code between the connect and disconnect calls.

Library file writing involves not only the question of what to put in the file, but also subsidiary issues such as
where to install the file so it can be accessed by your programs and (on multiuser systems such as Unix) how to set
its access privileges so its contents aren't exposed to people who shouldn't see it. Writing the library file and setting
up your language processor to be able to find it are API-specific issues; they're dealt with in the language-specific
sections to follow. By contrast, questions about file ownership and access mode are more general issues about
which you'll need to make some decisions no matter which language you use (at least if you're using Unix):

o Ifalibrary file is private and contains code to be used only by you, the file can be placed under your own
account and made accessible only to you. Assuming a library file mylib is already owned by you, you can
make it private like this:

% chmod 600 mylib

« If the library file is to be used only by your web server, you can install it in a server library directory and
make the file owned by and accessible only to the server user ID. You may need to be root to do this. For
example, if the web server runs as wwwusr, these commands make the file private to that user:

° # chown wwwusr mylib
chmod 600 mylib

« If the library file is public, you can place it in a location that your programming language searches
automatically when it looks for libraries. (Most language processors search for libraries in some default set
of directories.) You may need to be root to install files in one of these directories. Then you can make the
file world readable:

chmod 444 mylib

The example programs in this section assume that you'll install library files somewhere other than the directories
the language processors search by default, as an excuse to demonstrate how to modify each language's search
algorithm to look in a directory of your choosing. Many of the programs written in this book execute in a web
context, so the library file installation directories used for the examples are the perl, php, python, and java
directories under /usr/local/apache/lib. If you want to put the files somewhere else, just adjust the pathnames in the
programs appropriately, or else take advantage of the facility that many programming languages provide for
specifying where to look for library files by means of an environment or configuration variable. For our API
languages, these variables are listed in the following table:

Language Variable name Variable type
Perl PERL5LIB Environment variable
PHP include_path Configuration variable
Python PYTHONPATH Environment variable
Java CLASSPATH Environment variable

In each case, the variable value is a directory or set of directories. For example, if under Unix | put Perl library
files in the /u/paul/lib/perl directory, | can set the PERL5LIB environment variable for tcsh like this in my .login
file:

setenv PERL5LIB /Zu/paul/lib/perl

Under Windows, if | put Perl library files in D:\lib\perl, I can set PERL5L 1B as follows in AUTOEXEC.BAT:

SET PERL5LIB=D:\lib\perl

In each case, the variable setting tells Perl to look in the specified directory for library files, in addition to whatever
other directories it would search by default. The other environment variables (PYTHONPATH and CLASSPATH) are
specified using the same syntax. For more information on setting environment variables, see Recipe 1.9.

For PHP, the search path is defined by the value of the include_path variable in the PHP initialization file
(typically named php.ini or php3.ini). On my system, the file's pathname is /usr/local/lib/php.ini; under Windows,
the file is likely to be found in the Windows system directory or under the main PHP installation directory. The
value of include_path is defined with a line like this:

include_path = "value™

The value is specified using the same syntax as for environment variables that name directories. That is, it's a list
of directory names, with the names separated by colons under Unix and semicolons under Windows. For example,
if you want PHP to look for include files in the current directory and in the lib/php directory under the web server
root directory /usr/local/apache, include_path should be set like this under Unix:

include_path = *"_:/usr/local/apache/lib/php"

If you modify the initialization file and PHP is running as an Apache module, you'll need to restart Apache to make
the change take effect.

Now let's construct a library for each API. Each section here demonstrates how to write the library file itself, then
discusses how to use the library from within programs.

2.4.4 Perl

In Perl, library files are called modules, and typically have an extension of .pm ("Perl module™). Here's a sample
module file, Cookbook.pm, that implements a module named Cookbook. (It's conventional for the basename of a
Perl module file to be the same as the identifier on the package line in the file.)

package Cookbook;
Cookbook.pm - library file with utility routine for connecting to MySQL

use strict;
use DBI;

Establish a connection to the cookbook database, returning a database
handle. Dies with a message if the connection cannot be established.

sub connect

my $db_name = "‘cookbook™;
my $host name = "localhost";
my $user_name = '‘cbuser'';
my $password = *‘cbpass’;

my $dsn = "DBI:mysql :host=$host_name;database=$db_name";

return (DBI->connect ($dsn, $user_name, $password,
{ PrintError => 0, RaiseError => 1}));

}

1; # return true

The module encapsulates the code for establishing a connection to the MySQL server into a function connect(),
and the package identifier establishes a Cookbook namespace for the module, so you invoke the connect()
function using the module name:

$dbh = Cookbook: :connect ();

The final line of the module file is a statement that trivially evaluates to true. This is needed because Perl assumes
something is wrong with a module and exits after reading it if the module doesn't return a true value.

Perl locates module files by searching through the directories named in its @INC array. This array contains a default
list of directories. To find out what they are on your system, invoke Perl as follows at the command line:

% perl -V

The last part of the output from the command shows the directories listed in the @INC array. If you install a module
file in one of those directories, your scripts will find it automatically. If you install the module somewhere else,
you'll need to tell your scripts where to find it by including a use Iib statement. For example, if you install the
Cookbook.pm module file in /usr/local/apache/lib/perl, you can write a test harness script harness.pl that uses the
module as follows:

#1 /usr/bin/perl -w
harness.pl - test harness for Cookbook.pm library

use strict;
use lib gw(/usr/local/apache/lib/perl);
use Cookbook;

my $dbh = Cookbook::connect ();
print "Connected\n';
$dbh->disconnect ();

print "Disconnected\n;

exit (0);

Note that harness.pl does not have a use DBI statement. It's not necessary, because the Cookbook module itself
imports the DBI module, so any script that uses Cookbook also gets DBI.

Another way to specify where Perl should look for module files (in addition to the directories that it searches by
default) is to set the PERL5L 1B environment variable. If you do that, the advantage is that your scripts won't need
the use lib statement. (The corresponding disadvantage is that every user who runs scripts that use the Cookbook
module will have to set PERL5LIB.)

2.4.5 PHP

PHP provides an include statement that allows the contents of a file to be read into and included as part of the
current script. This provides a natural mechanism for creating libraries: put the library code into an include file,
install it in one of the directories in PHP's search path, and include it into scripts that need it. For example, if you
create an include file named Cookbook.php, any script that needs it can use a statement like this:

include ""Cookbook.php™;

The contents of PHP include files are written like regular scripts. We can write such a file, Cookbook.php, to
contain a function, cookbook_connect(), as follows:

<?php
Cookbook.php - library file with utility routine for connecting to MySQL

Establish a connection to the cookbook database, returning a connection
identifier. Dies with a message iIf the connection cannot be established.

function cookbook_connect ()

{
$db_name = ""cookbook™;
$host _name = "localhost";
$user_name = '‘cbuser’;
$password = '‘chpass'';

$conn_id = @mysql_connect ($host name, $user_name, $password);
if (!$conn_id)
{
1T mysql_errno()/mysql_error() work for failed connections, use
them (invoke with no argument). Otherwise, use $php_errormsg.
it (mysql _errno ())
{

die (sprintf ('Cannot connect to server: %s (%d)\n",
htmlspecialchars (mysqgl_error ()),
mysql_errno ()));
}
else
t
die ('Cannot connect to server: "
. htmlspecialchars ($php_errormsg) . "\n");

}
if (1@mysqgl_select_db ($db_name))
{

die (sprintf ('Cannot select database: %s (%d)\n",
htmlspecialchars (mysqgl _error ($conn_id)),
mysql_errno ($conn_id)));

return ($conn_id);

?>

Although most PHP examples throughout this book don't show the <?php and ?> tags, I've shown them as part of
Cookbook.php here to emphasize that include files must enclose all PHP code within those tags. The PHP
interpreter doesn't make any assumptions about the contents of an include file when it begins parsing it, because
you might include a file that contains nothing but HTML. Therefore, you must use <?php and ?> to specify
explicitly which parts of the include file should be considered as PHP code rather than as HTML, just as you do in
the main script.

Assuming that Cookbook.php is installed in a directory that's named in PHP's search path (as defined by the
include_path variable in the PHP initialization file), it can be used from a test harness script, harness.php. The
entire script looks like this:

<?php
harness.php - test harness for Cookbook.php library

include "'Cookbook.php";

$conn_id = cookbook connect ();
print ('Connected\n');
mysqgl_close ($conn_id);

print ('Disconnected\n™);

?>

If you don't have permission to modify the PHP initialization file, you can access an include file by specifying its
full pathname. For example:

include "/usr/local/apache/1ib/php/Cookbook.php™;

PHP also provides a require statement that is like include except that PHP reads the file even if the require
occurs inside a control structure that never executes (such as an if block for which the condition is never true).
PHP 4 adds include_once and require_once Statements. These are like include and require except that if the
file has already been read, its contents are not processed again. This is useful for avoiding multiple-declaration
problems that can easily occur in situations where library files include other library files.

A way to simulate single-inclusion behavior under PHP 3 is to associate a unique symbol with a library and
process its contents only if the symbol is not already defined. For example, a library file, MyLibrary.php, might be
structured like this:

<?php
MyLibrary.php - illustrate how to simulate single-inclusion behavior in PHP 3

Check whether or not the symbol associated with the file is defined.
1T not, define the symbol and process the Ffile®"s contents. Otherwise,
the file has already been read; skip the remainder of its contents.
if (Ydefined ('_MYLIBRARY_PHP_"))

define (*_MYLIBRARY_PHP_ ", 1);

... put rest of library here ...

} # end _MYLIBRARY_PHP

?>

Sidebar 5. Where Should PHP Include Files
Be Installed?

PHP scripts often are placed in the document tree of your web server, and clients can request them
directly. For PHP library files, | recommend that you place them somewhere outside the document tree,
especially if (like Cookbook.php) they contain names and passwords. This is particularly true if you use
a different extension such as .inc for the names of include files. If you do that and install include files
in the document tree, they might be requested directly by clients and will be displayed as plain text,
exposing their contents. To prevent that from happening, reconfigure Apache so that it treats files with
the .inc extension as PHP code to be processed by the PHP interpreter rather than being displayed
literally.

2.4.6 Python

Python libraries are written as modules and referenced from scripts using import or from statements. To put the
code for connecting to MySQL into a function, we can write a module file Cookbook.py:

Cookbook.py - library file with utility routine for connecting to MySQL

import sys
import MySQLdb

Establish a connection to the cookbook database, returning a connection
object. Dies with a message if the connection cannot be established.

def connect ():

host_name = "localhost"
db_name = "‘cookbook"
user_hame = '‘cbuser"
password = 'cbpass"
try:

conn = MySQLdb.connect (db = db_name,
host = host name,

user = user_name,
passwd = password)
return conn
except MySQLdb.Error, e:
print ""Cannot connect to server"
print "Error code:", e.args[0]
print "Error message:', e.args[1]
sys.exit (1)

The filename basename determines the module name, so the module is called Cookbook. Module methods are
accessed through the module name, thus you would invoke the connect() method of the Cookbook module like
this:

conn = Cookbook.connect ();

The Python interpreter searches for modules in directories named in the sys. path variable. Just as with Perl's
@INC array, sys.path is initialized to a default set of directories. You can find out what those directories are on
your system by running Python interactively and entering a couple of commands:

% python
>>> import sys
>>> sys.path

If you put Cookbook.py in one of the default directories, you can reference it from a script using an import
statement and Python will find it automatically:

import Cookbook

If you install Cookbook.py somewhere else, you can add the directory where it's installed to the value of sys. path.
Do this by importing the sys module and invoking sys.path. insert(). The following test harness script,
harness.py, shows how to do this, assuming the Cookbook module is installed in the /usr/local/apache/lib/python
directory:

#1 /usr/bin/python
harness.py - test harness for Cookbook.py library

Import sys module and add directory to search path
import sys

sys.path.insert (0, "/usr/local/apache/lib/python'™)
import MySQLdb

import Cookbook

conn = Cookbook.connect ()
print ""Connected"”
conn.close ()

print "Disconnected”
sys.exit (0)

Another way to tell Python where to find module files is to set the PYTHONPATH environment variable. If you set
that variable to include your module directory, scripts that you run need not modify sys_path.

It's also possible to import individual symbols from a module using a from statement:

from Cookbook import connect

This makes the connect() routine available to the script without the need for the module name, so you'd use it
like this:

conn = connect ()

2.4.7 Java
Java library files are similar to Java programs in most ways:

e The class line in the source file indicates a class name.
e The file should have the same name as the class (with a .java extension).
e You compile the .java file to produce a .class file.

However, unlike regular program files, Java library files have no main() function. In addition, the file should
begin with a package identifier that specifies the location of the class within the Java namespace. A common
convention is to begin package identifiers with the reverse domain of the code author; this helps make identifiers
unique and avoid conflict with classes written by other authors.2 In my case, the domain is Kitebird.com, so if |
want to write a library file and place it under mcb within my domain's namespace, the library should begin with a
package statement like this:

21 Domain names proceed right to left from more general to more specific within the domain namespace, whereas the Java class namespace proceeds left to right from general to
specific. Thus, to use a domain as the prefix for a package name within the Java class namespace, it's necessary to reverse it.

package com.kitebird.mcb;

Java packages developed for this book will be placed within the com.kitebird.mcb namespace to ensure their
naming uniqueness.

The following library file, Cookbook.java, defines a Cookbook class that implements a connect() method for
connecting to the cookbook database. connect() returns a Connection object if it succeeds, and throws an
exception otherwise. To help the caller deal with failures, the Cookbook class also defines getErrorMessage()
and printErrorMessage(), utility routines that return the error message as a string or print it to System.err.

// Cookbook.java - library file with utility routine for connecting to MySQL
package com.kitebird.mcb;
import java.sql.*;

public class Cookbook

{

// Establish a connection to the cookbook database, returning
// a connection object. Throws an exception if the connection
// cannot be established.

public static Connection connect () throws Exception

{
String url = “jdbc:mysqgl://localhost/cookbook™;
String user = "‘cbuser’;
String password = ‘‘cbpass™;
Class.forName (“'com.mysql.jdbc.Driver'™).newlnstance ();
return (DriverManager.getConnection (url, user, password));
}

// Return an error message as a string

public static String getErrorMessage (Exception e)

{
StringBuffer s = new StringBuffer ();
iT (e instanceof SQLException) // JDBC-specific exception?
{
// print general message plus any database-specific message
s.append (Error message: " + e.getMessage () + '\n"");
s.append (“Error code:
+ ((SQLException) e).getErrorCode () + "\n'");
}
else
{
s.append (e + "\n"");
}
return (s.toString ());
}

// Get the error message and print it to System.err

public static void printErrorMessage (Exception e)

{
}

System.err.println (Cookbook.getErrorMessage (e));

The routines within the class are declared using the static keyword, which makes them class methods rather than
instance methods. That's because the class is used directly rather than by creating an object from it and invoking
the methods through the object.

To use the Cookbook.java file, compile it to produce Cookbook.class, then install the class file in a directory that
corresponds to the package identifier. This means that Cookbook.class should be installed in a directory named
com/kitebird/mcb (or com\kitebird\mcb under Windows) that is located under some directory named in your
CLASSPATH setting. For example, if CLASSPATH includes /usr/local/apache/lib/java under Unix, you could install
Cookbook.class in the /usr/local/apache/lib/java/com/kitebird/mcb directory. (See Recipe 2.2 for more information
about the CLASSPATH variable.)

To use the Cookbook class from within a Java program, you must first import it, then invoke the
Cookbook.connect() method. The following test harness program, Harness.java, shows how to do this:

// Harness.java - test harness for Cookbook library class

import java.sql.*;
import com.kitebird.mcb.Cookbook;

public class Harness

{
public static void main (String[] args)
{
Connection conn = null;
try
{
conn = Cookbook.connect ();
System.out.println ('Connected™);
catch (Exception e)
Cookbook.printErrorMessage (e);
System.exit (1);
3
finally
{
it (conn = null)
{
try
{
conn.close ();
System.out.println (*'Disconnected™);
catch (Exception e)
{
String err = Cookbook.getErrorMessage (e);
System.out.println (err);
}
}
}
}
}

Harness.java also shows how to use the error message routines from the Cookbook class when a MySQL-related
exception occurs. printErrorMessage() takes the exception object and uses it to print an error message to
System.err. getErrorMessage() returns the error message as a string. You can display the message yourself,
write it to a log file, or whatever.

2.5 Issuing Queries and Retrieving Results

2.5.1 Problem

You want your program to send a query to the MySQL server and retrieve the result.
2.5.2 Solution

Some statements only return a status code, others return a result set (a set of rows). Most APIs provide different
functions for each type of statement; if so, use the function that's appropriate for your query.

2.5.3 Discussion

This section is the longest of the chapter because there are two categories of queries you can execute. Some
statements retrieve information from the database; others make changes to that information. These two types of
queries are handled differently. In addition, some APIs provide several different functions for issuing queries,
which complicates matters further. Before we get to the examples demonstrating how to issue queries from within
each API, I'll show the table used for examples, then discuss the general statement categories and outline a strategy
for processing them.

In Chapter 1, we created a table named 1imbs to use for some sample queries. In this chapter, we'll use a different
table named profile. It's based on the idea of a "buddy list," that is, the set of people we like to keep in touch with
while we're online. To maintain a profile about each person, we can use the following table:

CREATE TABLE profile

(
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
name CHAR(20) NOT NULL,
birth DATE,
color ENUM("blue®,"red","green*,"brown*®,*black®, *white"),
foods SET(" lutefisk®,"burrito”, "curry”,“eggroll®, “fadge®, "pizza“),
cats INT,
PRIMARY KEY (id)
)

The profi le table reflects that the things that are important to us are each buddy's name, age, favorite color,
favorite foods, and number of cats—obviously one of those goofy tables that are used only for examples in a
book!= The table includes an id column containing unique values so that we can distinguish records from each
other, even if two buddies have the same name. id and name are NOT NULL because they're each required to have a
value. The other columns are allowed to be NULL because we might not know the value to put into them for any
given individual. (We'll use NULL to signify "unknown.") Notice that although we want to keep track of age, there
is no age column in the table. Instead, there is a birth column of DATE type. That's because ages change, but
birthdays don't. If we recorded age values, we'd have to keep updating them. Storing the birth date is better because
it's stable, and we can use it to calculate age at any given moment. (Age calculations are discussed in Recipe 5.20.)
color is an ENUM column; color values can be any one of the listed values. foods is a SET, which allows the value
to be chosen as any combination of the individual set members. That way we can record multiple favorite foods for
any buddy.

BT Actually, it's not that goofy. The table uses several different data types for its columns, and these will come in handy later for illustrating how to solve particular kinds of problems
that pertain to specific column types.

To create the table, use the profile.sql script in the tables directory of the recipes distribution. Change location
into that directory, then run the following command:

% mysql cookbook < profile.sql

Another way to create the table is to issue the CREATE TABLE statement manually from within the mysgl program,
but | recommend that you use the script, because it also loads sample data into the table. That way you can
experiment with the table, then restore it after changing it by running the script again.

4] See the note at the very end of this chapter on the importance of restoring the PrOF i 1€ table.

The initial contents of the profi le table loaded by the profile.sgl script look like this:

mysqgl> SELECT * FROM profile;

TR S o o ——_—— Ry E T —— +
| id | name | birth | color | foods | cats |
R o Fom Ry S +
| 1| Fred | 1970-04-13 | black | lutefisk,fadge,pizza | O |
| 2 | Mort | 1969-09-30 | white | burrito,curry,eggroll | 3]
| 3 | Brit | 1957-12-01 | red | burrito,curry,pizza | 1]
| 4 | Carl | 1973-11-02 | red | eggroll,pizza | 4 |
| 5| Sean | 1963-07-04 | blue | burrito,curry | 5]
| 6 | Alan | 1965-02-14 | red | curry,fadge | 1]
| 7 | Mara | 1968-09-17 | green | lutefisk, fadge | 1]
|l 8 | Shepard | 1975-09-02 | black | curry,pizza | 2]
| 9 | Dick | 1952-08-20 | green | lutefisk, fadge | 0 |
| 10 | Tony | 1960-05-01 | white | burrito,pizza | O |
Fom et o Fom Ry N +

Most of the columns in the profi le table allow NULL values, but none of the rows in the sample dataset actually
contain NULL yet. This is because NULL values complicate query processing a bit and | don't want to deal with those
complications until we get to Recipe 2.8 and Recipe 2.9.

2.5.4 SQL Statement Categories
SQL statements can be divided into two broad categories:

o Statements that do not return a result set (that is, a set of rows). This statement category includes INSERT,
DELETE, and UPDATE. As a general rule, statements of this type generally change the database in some way.
There are some exceptions, such as USE db_name, which changes the current (default) database for your
session without making any changes to the database itself.

o Statements that return a result set, such as SELECT, SHOW, EXPLAIN, and DESCRIBE. | refer to such
statements generically as SELECT statements, but you should understand that category to include any
statement that returns rows.

The first step in processing a query is to send it to the MySQL server for execution. Some APIs (Perl and Java, for
example) recognize a distinction between the two categories of statements and provide separate calls for executing
them. Others (such as PHP and Python) do not and have a single call for issuing all statements. However, one thing
all APIs have in common is that you don't use any special character to indicate the end of the query. No terminator
is necessary because the end of the query string implicitly terminates the query. This differs from the way you
issue queries in the mysqgl program, where you terminate statements using a semicolon (;) or \g. (It also differs
from the way | normally show the syntax for SQL statements, because I include semicolons to make it clear where
statements end.)

After sending the query to the server, the next step is to check whether or not it executed successfully. Do not
neglect this step. You'll regret it if you do. If a query fails and you proceed on the basis that it succeeded, your
program won't work. If the query did execute, your next step depends on the type of query you issued. If it's one
that returns no result set, there's nothing else to do (unless you want to check how many rows were affected by the
query). If the query does return a result set, you can fetch its rows, then close the result set.

Sidebar 6. Don't Shoot Yourself in the Foot:
Check for Errors

Apparently, the principle that you should check for errors is not so obvious or widely appreciated as
one might hope. Many messages posted on MySQL-related mailing lists are requests for help with
programs that fail for reasons unknown to the people that wrote them. In a surprising number of cases,
the reason these developers are mystified by their programs is that they put in no error checking, and
thus gave themselves no way to know that there was a problem or to find out what it was! You cannot
help yourself this way. Plan for failure by checking for errors so that you can take appropriate action if
they occur.

Now we're ready to see how to issue queries in each API. Note that although the scripts check for errors as
necessary, for brevity they just print a generic message that an error occurred. You can display more specific error
messages using the techniques illustrated in Recipe 2.3.

2.5.5 Perl

The Perl DBI module provides two basic approaches to query execution, depending on whether or not you expect
to get back a result set. To issue a query such as INSERT or UPDATE that returns no result set, use the do() method.
It executes the query and returns the number of rows affected by the query, or undef if an error occurs. For
example, if Fred gets a new Kitty, the following query can be used to increment his cats count by one:

my $count = $dbh->do ('UPDATE profile SET cats = cats+l WHERE name = "Fred"');
if ($count) # print row count if no error occurred

{
$count += 0O;
print "$count rows were updated\n';

If the query executes successfully but affects no rows, do() returns a special value, the string "'0E0" (that is, the
value zero in scientific notation). ""0E0" can be used for testing the execution status of a query because it is true in
Boolean contexts (unlike undef). For successful queries, it can also be used when counting how many rows were
affected, because it is treated as the number zero in numeric contexts. Of course, if you print that value as is, you'll
print "0EO", which might look kind of weird to people who use your program. The preceding example shows one
way to make sure this doesn't happen: adding zero to the value explicitly coerces it to numeric form so that it
displays as 0. You can also use printf with a %d format specifier to cause an implicit numeric conversion:

my $count = $dbh->do ("'UPDATE profile SET color = color WHERE name = "Fred"');
it ($count) # print row count if no error occurred

{
}

printf "%d rows were updated\n', $count;

If RaiseError is enabled, your script will terminate automatically if a DBI-related error occurs and you don't need
to bother checking $count to see if do() failed:

my $count = $dbh->do ('UPDATE profile SET color = color WHERE name = "Fred"");
printf "%d rows were updated\n', $count;

To process queries such as SELECT that do return a result set, use a different approach that involves four steps:

e Specify the query by calling prepare() using the database handle. prepare() returns a statement
handle to use with all subsequent operations on the query. (If an error occurs, the script terminates if
RaiseError is enabled; otherwise, prepare() returns undef.)

e Call execute() to execute the query and generate the result set.

« Perform a loop to fetch the rows returned by the query. DBI provides several methods you can use in this
loop, which we'll describe shortly.

o Release resources associated with the result set by calling finish().

The following example illustrates these steps, using fetchrow_array() as the row-fetching method and
assuming RaiseError is enabled:

my $sth = $dbh->prepare ('SELECT id, name, cats FROM profile™);
$sth->execute ();

my $count = O;

while (my @val = $sth->fetchrow_array ())

print "id: $val[0], name: $val[1], cats: $val[2]\n";
++$count;

}
$sth->Finish ();
print "$count rows were returned\n';

The row-fetching loop just shown is followed by a call to finish(), which closes the result set and tells the
server that it can free any resources associated with it. You don't actually need to call finish() if you fetch every
row in the set, because DBI notices when you've reached the last row and releases the set for itself. Thus, the
example could have omitted the finish() call without ill effect. It's more important to invoke finish()
explicitly if you fetch only part of a result set.

The example illustrates that if you want to know how many rows a result set contains, you should count them
yourself while you're fetching them. Do not use the DBI rows() method for this purpose; the DBI documentation
discourages this practice. (The reason is that it is not necessarily reliable for SELECT statements—not because of
some deficiency in DBI, but because of differences in the behavior of various database engines.)

DBI has several functions that can be used to obtain a row at a time in a row-fetching loop. The one used in the
previous example, fetchrow_array(), returns an array containing the next row, or an empty list when there are
no more rows. Elements of the array are accessed as $val [0], $val[1], ..., and are present in the array in the same
order they are named in the SELECT statement. This function is most useful for queries that explicitly name
columns to selected. (If you retrieve columns with SELECT *, there are no guarantees about the positions of
columns within the array.)

fetchrow_arrayref() is like fetchrow_array(), except that it returns a reference to the array, or undef when
there are no more rows. Elements of the array are accessed as $ref->[0], $ref->[1], and so forth. As with
fetchrow_array(), the values are present in the order named in the query:

my $sth = $dbh->prepare ("'SELECT id, name, cats FROM profile™);
$sth->execute ();

my $count = O;

while (my $ref = $sth->Ffetchrow_arrayref ())

{
print "id: $ref->[0], name: $ref->[1], cats: Sref->[2]\n";
++$count;

}

print "$count rows were returned\n';

fetchrow_hashref() returns a reference to a hash structure, or undef when there are no more rows:

my $sth = $dbh->prepare ("'SELECT id, name, cats FROM profile™);
$sth->execute ();

my $count = O;

while (my $ref = $sth->Ffetchrow_hashref ())

{

print "id: $ref->{id}, name: $ref->{name}, cats: $ref->{cats}\n"';
++$count;

print "$count rows were returned\n';

The elements of the hash are accessed using the names of the columns that are selected by the query ($ref->{id},
$ref->{name}, and so forth). fetchrow_hashref() is particularly useful for SELECT * queries, because you can
access elements of rows without knowing anything about the order in which columns are returned. You just need
to know their names. On the other hand, it's more expensive to set up a hash than an array, so fetchrow_hashref(
) is slower than fetchrow_array() or fetchrow_arrayref(). It's also possible to "lose™ row elements if they
have the same name, because column names must be unique. The following query selects two values, but
fetchrow_hashref() would return a hash structure containing a single element named id:

SELECT id, id FROM profile

To avoid this problem, you can use column aliases to ensure that like-named columns have distinct names in the
result set. The following query retrieves the same columns as the previous query, but gives them the distinct names
idand id2:

SELECT id, id AS 1d2 FROM profile

Admittedly, this query is pretty silly, but if you're retrieving columns from multiple tables, you may very easily run
into the problem of having columns in the result set that have the same name. An example where this occurs may
be seen in Recipe 12.4.

In addition to the methods for performing the query execution process just described, DBI provides several high-
level retrieval methods that issue a query and return the result set in a single operation. These all are database

handle methods that take care of creating and disposing of the statement handle internally before returning the
result set. Where the methods differ is the form in which they return the result. Some return the entire result set,
others return a single row or column of the set, as summarized in the following table:=

Flselectrow_arrayref()andselectall_hashref() require DBI 1.15 or newer. Se lectrow_hashref() requires DBI 1.20 or
newer (it was present a few versions before that, but with a different behavior than it uses now).

Method Return value
selectrow_array() First row of result set as an array
selectrow_arrayref() First row of result set as a reference to an array
selectrow_hashref() First row of result set as a reference to a hash
selectcol_arrayref() First column of result set as a reference to an array
selectall_arrayref() Entire result set as a reference to an array of array references
selectall_hashref() Entire result set as a reference to a hash of hash references

Most of these methods return a reference. The exception is selectrow_array(), which selects the first row of
the result set and returns an array or a scalar, depending on how you call it. In array context, selectrow_array()
returns the entire row as an array (or the empty list if no row was selected). This is useful for queries from which
you expect to obtain only a single row:

my @val = $dbh->selectrow_array (
"SELECT name, birth, foods FROM profile WHERE id = 3");

When selectrow_array() is called in array context, the return value can be used to determine the size of the
result set. The column count is the number of elements in the array, and the row count is 1 or 0:

my $ncols = @val;
my $nrows = ($ncols ? 1 : 0);

You can also invoke selectrow_array() inscalar context, in which case it returns only the first column from
the row. This is especially convenient for queries that return a single value:

my $buddy count = $dbh->selectrow_array ('SELECT COUNT(*) FROM profile'™);

If a query returns no result, selectrow_array() returns an empty array or undef, depending on whether you call
it in array or scalar context.

selectrow_arrayref() and selectrow _hashref() select the first row of the result set and return a reference
to it, or undef if no row was selected. To access the column values, treat the reference the same way you treat the
return value from fetchrow_arrayref() or fetchrow_hashref(). You can also use the reference to get the
row and column counts:

my $ref = $dbh->selectrow_arrayref ($query);
my $ncols = (defined ($ref) ? @{$ref} : 0);
my $nrows = ($ncols ? 1 : 0);

my $ref = $dbh->selectrow_hashref ($query);
my $ncols = (defined ($ref) ? keys (%{$ref}) : 0);
my $nrows = ($ncols ? 1 : 0);

With selectcol_arrayref(), a reference to a single-column array is returned, representing the first column of
the result set. Assuming a non-undef return value, elements of the array are accessed as $ref->[i] for the value
from row i. The number of rows is the number of elements in the array, and the column count is 1 or O:

my $ref = $dbh->selectcol_arrayref ($query);
my $nrows = (defined ($ref) ? @{$ref} : 0);
my $ncols ($nrows ? 1 : 0);

selectall_arrayref() returns a reference to an array, where the array contains an element for each row of the
result. Each of these elements is a reference to an array. To access row i of the result set, use $ref->[i] to get a
reference to the row. Then treat the row reference the same way as a return value from fetchrow_arrayref() to
access individual column values in the row. The result set row and column counts are available as follows:

my $ref = $dbh->selectall_arrayref ($query);
my $nrows = (defined ($ref) ? @{$ref} : 0);
my $ncols = ($nrows ? @{$ref->[0]} : 0);

selectall_hashref() is somewhat similar to selectall_arrayref(), but returns a reference to a hash, each
element of which is a hash reference to a row of the result. To call it, specify an argument that indicates which
column to use for hash keys. For example, if you're retrieving rows from the profi le table, the PRIMARY KEY is the
id column:

my $ref = $dbh->selectall _hashref (“'SELECT * FROM profile', "id");

Then access rows using the keys of the hash. For example, if one of the rows has a key column value of 12, the
hash reference for the row is accessed as $sref->{12%}. That value is keyed on column names, which you can use to
access individual column elements (for example, $ref->{12}->{name}). The result set row and column counts are
available as follows:

my @keys = (defined ($ref) ? keys (%{$ref}) : ());
my $nrows scalar (@keys);
my $ncols ($nrows ? keys (W{$ref->{$keys[0]1}}) : 0);

The selectall_xxx() methods are useful when you need to process a result set more than once, because DBI
provides no way to "rewind" a result set. By assigning the entire result set to a variable, you can iterate through its
elements as often as you please.

Take care when using the high-level methods if you have RaiseError disabled. In that case, a method's return
value may not always allow you to distinguish an error from an empty result set. For example, if you call
selectrow_array() in scalar context to retrieve a single value, an undef return value is particularly ambiguous
because it may indicate any of three things: an error, an empty result set, or a result set consisting of a single NULL
value. If you need to test for an error, you can check the value of $DBI::errstr or $DBI: :err.

2.5.6 PHP

PHP doesn't have separate functions for issuing queries that return result sets and those that do not. Instead, there is
a single function mysql_query() for all queries. mysql_query() takes a query string and an optional
connection identifier as arguments, and returns a result identifier. If you leave out the connection identifier
argument, mysql_query() uses the most recently opened connection by default. The first statement below uses
an explicit identifier; the second uses the default connection:

$result_id
$result_id

mysqgl_query ($query, $conn_id);
mysqgl_query ($query);

If the query fails, $sresult_id will be FALSE. This means that an error occurred because your query was bad: it
was syntactically invalid, you didn't have permission to access a table named in the query, or some other problem
prevented the query from executing. A FALSE return value does not mean that the query affected O rows (for a
DELETE, INSERT, or UPDATE) or returned rows (for a SELECT).

If $Sresult_id is not FALSE, the query executed properly. What you do at that point depends on the type of query.
For queries that don't return rows, $result_id will be TRUE, and the query has completed. If you want, you can
call mysql_affected_rows() to find out how many rows were changed:

$result_id = mysql _query ('DELETE FROM profile WHERE cats = 0", $conn_id);
iT (I$result_id)

die ('Oops, the query failed);
print (mysql affected rows ($conn_id) . " rows were deleted\n");

mysql_affected_rows() takes the connection identifier as its argument. If you omit the argument, the current
connection is assumed.

For queries that return a result set, mysql_query() returns a nonzero result identifier. Generally, you use this
identifier to call a row-fetching function in a loop, then call mysql_free_result() to release the result set. The
result identifier is really nothing more than a number that tells PHP which result set you're using. This identifier is
not a count of the number of rows selected, nor does it contain the contents of any of those rows. Many beginning
PHP programmers make the mistake of thinking mysql_query() returns a row count or a result set, but it doesn't.
Make sure you're clear on this point and you'll save yourself a lot of trouble.

Here's an example that shows how to run a SELECT query and use the result identifier to fetch the rows:

$result_id = mysql _query ('SELECT id, name, cats FROM profile", $conn_id);
if (I$result_id)

die ("'Oops, the query failed™);
while ($row = mysql_fetch _row ($result_id))

print ("id: $row[0], name: $row[1l], cats: $row[2]\n");

print (mysql_num_rows ($result_id) . " rows were returned\n);
mysql_free_result ($result_id);

The example demonstrates that you obtain the rows in the result set by executing a loop in which you pass the
result identifier to one of PHP's row-fetching functions. To obtain a count of the number of rows in a result set,
pass the result identifier to mysql_num_rows(). When there are no more rows, pass the identifier to
mysql_free_result() to close the result set. (After you call mysgl_free_result(), don't try to fetch a row or
get the row count, because at that point $result_id is no longer valid.)

Each PHP row-fetching function returns the next row of the result set indicated by $result_id, or FALSE when
there are no more rows. Where they differ is in the data type of the return value. The function shown in the
preceding example, mysql_fetch_row(), returns an array whose elements correspond to the columns selected by
the query and are accessed using numeric subscripts. mysql_fetch_array() is like mysgl_fetch_row(), but
the array it returns also contains elements that can be accessed using the names of the selected columns. In other
words, you can access each column using either its numeric position or its name:

$result_id = mysql_query ('SELECT id, name, cats FROM profile", $conn_id);
ifT (I$result id)

die (""Oops, the query failed);
while ($row = mysql_fetch_array ($result_id))

{

print (""id: $row[0], name: $row[1l], cats: $row[2]\n"");

print ("id: $row[id], name: $row[name], cats: $row[cats]\n"");
}
print (mysql_num_rows ($result_id) . " rows were returned\n);

mysql_free_result ($result_id);

Despite what you might expect, mysql_fetch_array() is not appreciably slower than mysql_fetch_row(),
even though the array it returns contains more information.

The previous example does not quote the non-numeric element names because they appear inside a quoted string.
Should you refer to the elements outside of a string, the element names should be quoted:

printf ("id: %s, name: %s, cats: %s\n',
$row["id"], $row[''name'], $row['cats]);

mysqgl_fetch_object() returns an object having members that correspond to the columns selected by the query
and that are accessed using the column names:

$result_id = mysql _query ('SELECT id, name, cats FROM profile", $conn_id);
if (I$result_id)

die ("'Oops, the query failed™);
while ($row = mysql_fetch object ($result_id))

print (""id: $row->id, name: $row->name, cats: $row->cats\n');
print (mysql_num_rows ($result_id) . " rows were returned\n);
mysql_free_result ($result_id);

PHP 4.0.3 adds a fourth row-fetching function, mysql_fetch_assoc(), that returns an array containing elements
that are accessed by name. In other words, it is like mysql_fetch_array(), except that the row does not contain
the values accessed by numeric index.

Sidebar 7. Don't Use count() to Get a
Column Count in PHP 3

PHP programmers sometimes fetch a result set row and then use count($row) to determine how many
values the row contains. It's preferable to use mysql_num_fields() instead, as you can see for
yourself by executing the following fragment of PHP code:

if (1($result_id = mysql_query ('SELECT 1, 0, NULL"™, $conn_id)))
die ('Cannot issue query\n'™);

$count = mysqgl_num_Ffields ($result_id);

print (""The row contains $count columns\n™);

if (1 ($row = mysql_fetch _row ($result_id)))
die ('Cannot fetch row\n');

$count = count ($row);

print (""The row contains $count columns\n™);

If you run the code under PHP 3, you'll find that count() returns 2. With PHP 4, count() returns 3.
These differing results occur because count() counts array values that correspond to NULL values in
PHP 4, but not in PHP 3. By contrast, mysql_field_count() uniformly returns 3 for both versions of
PHP. The moral is that count() won't necessarily give you an accurate value. Use
mysqgl_field_count() if you want to know the true column count.

2.5.7 Python

The Python DB-API interface does not have distinct calls for queries that return a result set and those that do not.
To process a query in Python, use your database connection object to get a cursor object.® Then use the cursor's
execute() method to send the query to the server. If there is no result set, the query is completed, and you can
use the cursor's rowcount attribute to determine how many records were changed:®

111 you're familiar with the term "cursor™ as provided on the server side in some databases, MySQL doesn't really provide cursors the same way. Instead, the MySQLdb module
emulates cursors on the client side of query execution.

1 Note that rowcount is an attribute, not a function. Refer to it as FOWCOUNT, not rOWCOUHt() or an exception will be raised.

try:
cursor = conn.cursor ()
cursor.execute ("'UPDATE profile SET cats = cats+l WHERE name = “Fred"™)
print "%d rows were updated” % cursor.rowcount
except MySQLdb.Error, e:
print "Oops, the query failed"
print e

If the query does return a result set, fetch its rows and close the set. DB-API provides a couple of methods for
retrieving rows. fetchone() returns the next row as a sequence (or None when there are no more rows):

try:
cursor = conn.cursor ()
cursor.execute (*'SELECT id, name, cats FROM profile™)
while 1:
row = cursor.fetchone ()
if row == None:
break
print "id: %s, name: %s, cats: %s" % (row[0], row[1], row[2])
print "%d rows were returned”™ % cursor.rowcount
cursor.close ()
except MySQLdb.Error, e:
print "Oops, the query failed”
print e

As you can see from the preceding example, the rowcount attribute is useful for SELECT queries, too; it indicates
the number of rows in the result set.

Another row-fetching method, fetchal 1 (), returns the entire result set as a sequence of sequences. You can
iterate through the sequence to access the rows:

try:
cursor = conn.cursor ()
cursor.execute ('SELECT id, name, cats FROM profile'™)
rows = cursor.fetchall ()
for row In rows:
print "id: %s, name: %s, cats: %s" % (row[0], row[1], row[2])
print "%d rows were returned” % cursor.rowcount
cursor.close ()
except MySQLdb.Error, e:
print "Oops, the query failed”
print e

Like DBI, DB-API doesn't provide any way to rewind a result set, so fetchal 1() can be convenient when you
need to iterate through the rows of the result set more than once or access individual values directly. For example,
if rows holds the result set, you can access the value of the third column in the second row as rows[1][2] (indexes
begin at 0, not 1).

To access row values by column name, specify the DictCursor cursor type when you create the cursor object.
This causes rows to be returned as Python dictionary objects with named elements:

try:
cursor = conn.cursor (MySQLdb.cursors.DictCursor)
cursor.execute ('SELECT id, name, cats FROM profile'™)
for row in cursor.fetchall ():
print "id: %s, name: %s, cats: %s" \

% (row["id™], row['name'™], row[cats'])
print "%d rows were returned”™ % cursor.rowcount
cursor.close ()

except MySQLdb.Error, e:

print "Oops, the query failed"
print e

2.5.8 Java

The JDBC interface provides specific object types for the various phases of query processing. Queries are issued in
JDBC by passing SQL strings to Java objects of one type. The results, if there are any, are returned as objects of
another type. Problems that occur while accessing the database cause exceptions to be thrown.

To issue a query, the first step is to get a Statement object by calling the createStatement() method of your
Connection object:

Statement s = conn.createStatement ();

Then use the Statement object to send the query to the server. JDBC provides several methods for doing this.
Choose the one that's appropriate for the type of statement you want to issue: executeUpdate() for statements
that don't return a result set, executeQuery() for statements that do, and execute() when you don't know.

The executeUpdate() method sends a query that generates no result set to the server and returns a count
indicating the number of rows that were affected. When you're done with the statement object, close it. The
following example illustrates this sequence of events:

try
{
Statement s = conn.createStatement ();
int count = s._executeUpdate ("'DELETE FROM profile WHERE cats = 0");
s.close (); // close statement
System.out.println (count + " rows were deleted");

}

catch (Exception e)

Cookbook.printErrorMessage (e);

For statements that return a result set, use executeQuery(). Then get a result set object and use it to retrieve the
row values. When you're done, close both the result set and statement objects:

try
{
Statement s = conn.createStatement ();
s.executeQuery (*'SELECT id, name, cats FROM profile'™);
ResultSet rs = s.getResultSet ();
int count = O;
while (rs.next ()) // loop through rows of result set
{
int id = rs.getint (1); // extract columns 1, 2, and 3
String name = rs.getString (2);
int cats = rs.getint (3);
System.out.println ('id: " + id
+ ", name: ' + name

+ ', cats: " + cats);

++count;
rs.close (); // close result set
s.close (); // close statement

System.out.println (count + ' rows were returned);
catch (Exception e)

Cookbook.printErrorMessage (e);

The ResultSet object returned by the getResultSet() method of your Statement object has a number of
methods of its own, such as next() to fetch rows and various getxxX() methods that access columns of the
current row. Initially the result set is positioned just before the first row of the set. Call next() to fetch each row
in succession until it returns false, indicating that there are no more rows. To determine the number of rows in a
result set, count them yourself, as shown in the preceding example.

Column values are accessed using methods such as getint(), getString(), getFloat(), and getDate().
To obtain the column value as a generic object, use getObject(). The getxxx() calls can be invoked with an
argument indicating either column position (beginning at 1, not 0) or column name. The previous example shows
how to retrieve the id, name, and cats columns by position. To access columns by name instead, the row-fetching
loop of that example can be rewritten as follows:

while (rs.next ()) // loop through rows of result set

{
int id = rs.getint ('id"™);
String name = rs.getString (‘'name'™);
int cats = rs.getint (‘'cats');
System.out.println ("id: " + id
+ ", name: " + name
+ ', cats: " + cats);
++count;
}

You can retrieve a given column value using any getxxx() call that makes sense for the column type. For
example, you can use getString() to retrieve any column value as a string:

String id = rs.getString ('id™);
String name = rs.getString (‘'name');
String cats = rs.getString (‘'cats');
System.out._println (id: " + id
+ ', name: " + name
+ ', cats: " + cats);

Or you can use getObject() to retrieve values as generic objects and convert the values as necessary. The
following code uses toString() to convert object values to printable form:

Object id = rs.getObject ('id"™);
Object name = rs.getObject (“'name™);
Object cats = rs.getObject (‘‘cats');

System.out._println ("id: " + id.toString ()
+ ", name: " + name.toString ()
+ ', cats: " + cats.toString ());

To find out how many columns are in each row, access the result set's metadata. The following code uses the
column count to print each row's columns as a comma-separated list of values:

try
{
Statement s = conn.createStatement ();
s.executeQuery ('SELECT * FROM profile™);
ResultSet rs = s_getResultSet ();
ResultSetMetaData md = rs.getMetaData (); // get result set metadata
int ncols = md.getColumnCount (); // get column count from metadata
int count = O;
whille (rs.next ()) // loop through rows of result set

{
for (int i = 0; 1 < ncols; i++) // loop through columns
{
String val = rs.getString (i+l);
if (i >0)
System.out.print (',);
System.out.print (val);
s
System.out.printin ();
++count;
rs.close (); // close result set
s.close (); // close statement

System.out.printin (count + rows were returned');

catch (Exception e)

Cookbook.printErrorMessage (e);

The third JDBC query-executing method, execute(), works for either type of query. It's particularly useful when
you receive a query string from an external source and don't know whether or not it generates a result set. The
return value from execute() indicates the query type so that you can process it appropriately: if execute()
returns true, there is a result set, otherwise not. Typically you'd use it something like this, where queryStr
represents an arbitrary SQL statement:

try
{

Statement s = conn.createStatement ();
if (s.execute (queryStr))
{

// there is a result set
ResultSet rs = s.getResultSet ();

// ... process result set here ...

rs.close (); // close result set

else
// there is no result set, just print the row count
System.out.println (s.getUpdateCount ()
+ " rows were affected™);
s.close (); // close statement

}
catch (Exception e)

Cookbook.printErrorMessage (e);

Sidebar 8. Closing JDBC Statement and
Result Set Objects

The JDBC query-issuing examples in this section close the statement and result set objects explicitly
when they are done with those objects. Some Java implementations close them automatically when you
close the connection. However, buggy implementations may fail to do this properly, so it's best not to
rely on that behavior. Close the objects yourself when you're done with them to avoid difficulties.

2.6 Moving Around Within a Result Set
2.6.1 Problem

You want to iterate through a result set multiple times, or to move to arbitrary rows within the result.

2.6.2 Solution

If your API has functions that provide these capabilities, use them. If not, fetch the result set into a data structure
so that you can access the rows however you please.

2.6.3 Discussion

Some APIs allow you to "rewind" a result set so you can iterate through its rows again. Some also allow you to
move to arbitrary rows within the set, which in effect gives you random access to the rows. Our APIs offer these
capabilities as follows:

o Perl DBI and Python DB-API don't allow direct positioning within a result set.

o PHP allows row positioning with the mysql_data_seek() function. Pass it a result set identifier and a
row number (in the range from 0 to mysql_num_rows()-1). Subsequent calls to row-fetching functions
return rows sequentially beginning with the given row. PHP also provides a mysql_result() function
that takes row and column indexes for random access to individual values within the result set. However,
mysqgl_result() is slow and normally should not be used.

« JDBC 2 introduces the concept of a "scrollable” result set, along with methods for moving back and forth
among rows. This is not present in earlier versions of JDBC, although the MySQL Connector/J driver does
happen to support next() and previous() methods even for JDBC 1.12.

Whether or not a particular database-access API allows rewinding and positioning, your programs can achieve
random access into a result set by fetching all rows from a result set and saving them into a data structure. For
example, you can use a two-dimensional array that stores result rows and columns as elements of a matrix. Once
you've done that, you can iterate through the result set multiple times or use its elements in random access fashion
however you please. If your API provides a call that returns an entire result set in a single operation, it's relatively
trivial to generate a matrix. (Perl and Python can do this.) Otherwise, you need to run a row-fetching loop and save
the rows yourself.

2.7 Using Prepared Statements and Placeholders in Queries
2.7.1 Problem

You want to write queries that are more generic and don't refer to specific data values, so that you can reuse them.

2.7.2 Solution

Use your API's placeholder mechanism, if it has one.
2.7.3 Discussion

One way to construct SQL statements from within a program is to put data values literally into the query string, as
in these examples:

SELECT * FROM profile WHERE age > 40 AND color = "green”

INSERT INTO profile (name,color) VALUES("Gary"®, "blue®)

Some APIs provide an alternative that allows you to specify query strings that do not include literal data values.
Using this approach, you write the statement using placeholders—special characters that indicate where the values
go. One common placeholder character is 2, so the previous queries might be rewritten to use placeholders like
this:

SELECT * FROM profile WHERE age > ? AND color = ?

INSERT INTO profile (name,color) VALUES(?,?)

For APIs that support this kind of thing, you pass the string to the database to allow it to prepare a query plan.
Then you supply data values and bind them to the placeholders when you execute the query. You can reuse the
prepared query by binding different values to it each time it's executed.

One of the benefits of prepared statements and placeholders is that parameter binding operations automatically
handle escaping of characters such as quotes and backslashes that you have to worry about yourself if you put the
data values into the query yourself. This can be especially useful if you're inserting binary data such as images into

your database, or using data values with unknown content such as input submitted by a remote user through a form
in a web page.

Another benefit of prepared statements is that they encourage statement reuse. Statements become more generic
because they contain placeholders rather than specific data values. If you're executing an operation over and over,
you may be able to reuse a prepared statement and simply bind different data values to it each time you execute it.
If so, you gain a performance benefit, at least for databases that support query planning. For example, if a program
issues a particular type of SELECT statement several times while it runs, such a database can construct a plan for the
statement, then reuse it each time, rather than rebuilding the plan over and over. MySQL doesn't build query plans,
so you don't get any performance boost from using prepared statements. However, if you port a program to a
database that does use query plans, you'll gain the advantage of prepared statements automatically if you've written
your program from the outset to use them. You won't have to convert from non-prepared statements to enjoy that
benefit.

A third benefit is that code that uses placeholder-based queries can be easier to read, although that's somewhat
subjective. As you read through this section, you might compare the queries used here with those from the
previous section that did not use placeholders, to see which you prefer.

2.7.4 Perl

To use placeholders in DBI scripts, put a ? in your query string at each location where you want to insert a data
value, then bind the values to the query. You can bind values by passing them to do() or execute(), or by
calling a DBI method specifically intended for placeholder substitution.

With do(), pass the query string and the data values in the same call:

my $count = $dbh->do ("'UPDATE profile SET color = ? WHERE name = ?",
undef,
'green’, ""Mara');

The arguments after the query string should be undef followed by the data values, one value for each placeholder.
(The undef argument that follows the query string is a historical artifact, but must be present.)

With prepare() plus execute(), pass the query string to prepare() to get a statement handle. Then use that
handle to pass the data values via execute():

my $sth = $dbh->prepare ("'UPDATE profile SET color = ? WHERE name = ?');
my $count = $sth->execute (‘‘green', "Mara');

You can use placeholders for SELECT statements, too. The following query looks for records having a name value
that begins with "M":

my $sth = $dbh->prepare ("'SELECT * FROM profile WHERE name LIKE ?');

$sth->execute ('M%™);

while (my $ref = $sth->fFetchrow_hashref ())

{

print "id: $ref->{id}, name: $ref->{name}, cats: $ref->{cats}\n";

$sth->Finish ();

A third way of binding values to placeholders is to use the bind_param() call. It takes two arguments, a
placeholder position and a value to be bound to the placeholder at that position. (Placeholder positions begin with
1, not 0.) The previous two examples can be rewritten to use bind_param() as follows:

my $sth = $dbh->prepare ("UPDATE profile SET color = ? WHERE name = ?');
$sth->bind_param (1, '"‘green™);
$sth->bind _param (2, "Mara');
my $count = $sth->execute ();

my $sth = $dbh->prepare (*'SELECT * FROM profile WHERE name LIKE ?");
$sth->bind_param (1, "M%'");

$sth->execute ();

while (my $ref = $sth->Ffetchrow_hashref ())

{

print "id: $ref->{id}, name: $ref->{name}, cats: $ref->{cats}\n";

}
$sth->Finish ();

No matter which method you use for placeholders, don't put any quotes around the ? characters, not even for
placeholders that represent strings. DBI adds quotes as necessary on its own. In fact, if you do put quotes around
the placeholder character, DBI will interpret it as the literal string constant *?'*, not as a placeholder.

The high-level retrieval methods such as selectrow_array() and selectall_arrayref() can be used with
placeholders, too. Like the do() method, the arguments are the query string and undef, followed by the data
values to be bound to the placeholders that occur in the query string. Here's an example:

my $ref = $dbh->selectall_arrayref (
“"SELECT name, birth, foods FROM profile
WHERE id > ? AND color = ?",
undef, 3, ''green');

Sidebar 9. Generating a List of
Placeholders

When you want to use placeholders for a set of data values that may vary in size, you must construct a
list of placeholder characters. For example, in Perl, the following statement creates a string consisting
of n placeholder characters separated by commas:

$str = join (',", ('?") X n);

The x repetition operator, when applied to a list, produces n copies of the list, so the join() call joins
these lists to produce a single string containing n comma-separated instances of the 2 character. This is
handy when you want to bind an array of data values to a list of placeholders in a query string, because

the size of the array indicates how many placeholder characters are needed:

$str = join (',", (C'?") x @values);

Another method of generating a list of placeholders that is perhaps less cryptic looks like this:

$str = "?" 1T @values;
$str .= ",?" for 1 .. @values-1;

Yet a third method is as follows:

$str = "?" if @values;
for (my $i = 1; $i < @values; $i++)
{
$str .= ",?";
3

That method's syntax is less Perl-specific and therefore easier to translate into other languages. For
example, the equivalent method in Python looks like this:

str =
if len (values) > O:
str = "7V
for i1 in range (1, len (values)):
str = str + ",?"

2.7.5 PHP

PHP provides no support for placeholders. See Recipe 2.9 to find out how to construct queries that refer to data
values that may contain special characters. Or see Recipe 2.10, which develops a class-based interface for PHP that

emulates placeholders.

2.7.6 Python

Python's MySQLdb module implements the concept of placeholders by using format specifiers in the query string.

To use placeholders, invoke the execute() method with two arguments: a query string containing format
specifiers, and a sequence containing the values to be bound to the query string. The following query uses
placeholders to search for records where the number of cats is less than 2 and the favorite color is green:

try:
cursor = conn.cursor ()
cursor.execute ("'SELECT * FROM profile WHERE cats < %s AND color = %s", \
(2, "green™))
for row in cursor.fetchall ():
print row
print "%d rows were returned” % cursor.rowcount

cursor.close ()

except MySQLdb.Error, e:
print "Oops, the query failed”
print e

If you have only a single value val to bind to a placeholder, you can write it as a sequence using the syntax
(val,). The following UPDATE statement demonstrates this:

try:
cursor = conn.cursor ()
cursor.execute ('UPDATE profile SET cats = cats+l WHERE name = %s', \
("'Fred™,))
print "%d rows were updated™ % cursor.rowcount
except MySQLdb.Error, e:
print "Oops, the query failed”
print e

Some of the Python DB-API driver modules support several format specifiers (such as %d for integers and %f for
floating-point numbers). With MySQLdb, you should use a placeholder of %s to format all data values as strings.
MySQL will perform type conversion as necessary. If you want to place a literal % character into the query, use %%
in the query string.

Python's placeholder mechanism provides quotes around data values as necessary when they are bound to the
query string, so you need not add them yourself.

2.7.7 Java

JDBC provides support for placeholders if you use prepared statements rather than regular statements. Recall that
the process for issuing regular statements is to create a Statement object and then pass the query string to one of
the query-issuing functions executeUpdate(), executeQuery(), Or execute(). To use a prepared statement
instead, create a PreparedStatement object by passing a query string containing 2 placeholder characters to your
connection object's prepareStatement() method. Then bind your data values to the statement using setxxx()
methods. Finally, execute the statement by calling executeUpdate(), executeQuery(), Or execute() with an
empty argument list. Here is an example that uses executeUpdate() to issue a DELETE query:

PreparedStatement s;

int count;

s = conn.prepareStatement ("'DELETE FROM profile WHERE cats = ?');
s.setint (1, 2); // bind a 2 to the first placeholder

count = s.executeUpdate ();

s.close (); // close statement

System.out._println (count + " rows were deleted");

For a query that returns a result set, the process is similar, but you use executeQuery() instead:

PreparedStatement s;
s = conn.prepareStatement ("'SELECT id, name, cats FROM profile"
+ " WHERE cats < ? AND color = ?');
s.setint (1, 2); // bind 2 and "green” to First and second placeholders

s.setString (2, 'green™);
s.executeQuery ();

// ... process result set here ...
s.close (); // close statement

The setxxx() methods that bind data values to queries take two arguments: a placeholder position (beginning
with 1, not 0) and the value to be bound to the placeholder. The type of the value should match the type in the
setxxx() method name. For example, you should pass an integer value to setint(), not a string.

Placeholder characters need no surrounding quotes in the query string. JDBC supplies quotes as necessary when it
binds values to the placeholders.

2.8 Including Special Characters and NULL Values in Queries
2.8.1 Problem

You've having trouble constructing queries that include data values containing special characters such as quotes or
backslashes, or special values such as NULL.

2.8.2 Solution
Use your API's placeholder mechanism or quoting function.
2.8.3 Discussion

Up to this point, our queries have used "safe"” data values requiring no special treatment. This section describes
how to construct queries when you're using values that contain special characters such as quotes, backslashes,
binary data, or values that are NULL. The difficulty with such values is as follows. Suppose you have the following
INSERT query:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES("Alison®,"1973-01-12","blue”, "eggroll”,4);

There's nothing unusual about that. But if you change the name column value to something like De "Mont that
contains a single quote, the query becomes syntactically invalid:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES("De"Mont*" ,"1973-01-12","blue”, "eggroll® , 4);

The problem is that there is a single quote inside a single-quoted string. To make the query legal, the quote could
be escaped by preceding it either with a single quote or with a backslash:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES("De" "*Mont*","1973-01-12","blue”, "eggroll* ,4);

INSERT INTO profile (name,birth,color,foods,cats)
VALUES("De\"Mont","1973-01-12","blue”,"eggroll*,4);

Alternatively, you could quote the name value itself within double quotes rather than within single quotes:

INSERT INTO profile (nhame,birth,color,foods,cats)
VALUES("'De"Mont", "1973-01-12","blue”, "eggroll”,4);

Naturally, if you are writing a query literally in your program, you can escape or quote the name value by hand
because you know what the value is. But if you're using a variable to provide the name value, you don't necessarily
know what the variable's value is. Worse yet, single quote isn't the only character you must be prepared to deal
with; double quotes and backslashes cause problems, too. And if you want to store binary data such as images or
sound clips in your database, such values might contain anything—not just quotes or backslashes, but other
characters such as nulls (zero-valued bytes). The need to handle special characters properly is particularly acute in
a web environment where queries are constructed using form input (for example, if you're searching for records
that match search terms entered by the remote user). You must be able to handle any kind of input in a general
way, because you can't predict in advance what kind of information people will supply. In fact, it is not uncommon
for malicious users to enter garbage values containing problematic characters in a deliberate attempt to break your
scripts.

The SQL NULL value is not a special character, but it too requires special treatment. In SQL, NULL indicates "no
value." This can have several meanings depending on context, such as "unknown," "missing," "out of range," and
so forth. Our queries thus far have not used NULL values, to avoid dealing with the complications that they
introduce, but now it's time to address these issues. For example, if you don't know De'Mont's favorite color, you
can set the color column to NULL—Dbut not by writing the query like this:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES("De" "*Mont*®,"1973-01-12","NULL", "eggroll*,4);

Instead, the NULL value shouldn't have any surrounding quotes at all:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES("De" "Mont*", "1973-01-12" ,NULL, "eggroll®,4);

If you were writing the query literally in your program, you'd simply write the word "NULL" without surrounding
quotes. But if the color value comes from a variable, the proper action is not so obvious. You must know
something about the variable's value to be able to determine whether or not to surround it with quotes when you
construct the query.

There are two general means at your disposal for dealing with special characters such as quotes and backslashes,
and with special values such as NULL:

o Use placeholders if your API supports them. Generally, this is the preferred method, because the API itself
will do all or most of the work for you of providing quotes around values as necessary, quoting or escaping
special characters within the data value, and possibly interpreting a special value to map onto NULL without
surrounding quotes. Recipe 2.7 provides general background on placeholder support; you should read that
section if you haven't already.

e Use a quoting function if your API provides one for converting data values to a safe form that is suitable
for use in query strings.

The remainder of this section shows how to handle special characters for each API. The examples demonstrate
how to insert a profi le table record that contains De "Mont for the name value and NULL for the color value. The
techniques shown work generally to handle any special characters, including those found in binary data. (The
techniques are not limited to INSERT queries. They work for other kinds of statements as well, such as SELECT
queries.) Examples showing specifically how to work with a particular kind of binary data—images—are provided

in Chapter 17.

A related issue not covered here is the inverse operation of transforming special characters in values returned from
your database for display in various contexts. For example, if you're generating HTML pages that include values
taken from your database, you have to convert < and > characters in those values to the HTML entities &1t; and
> to make sure they display properly. This topic is discussed in Chapter 16.

2.8.4 Perl

DBI supports a placeholder mechanism for binding data values to queries, as discussed in Recipe 2.7. Using this
mechanism, we can add the profile record for De'Mont by using do():

my $count = $dbh->do ("INSERT INTO profile (name,birth,color,foods,cats)
VALUES(?,?,?,?2,?2)",
undef,
"De"Mont™, ""1973-01-12", undef, "eggroll’, 4);

Alternatively, use prepare() plus execute():

my $sth = $dbh->prepare ("INSERT INTO profile (nhame,birth,color,foods,cats)
VALUES(?,?.?2.,2,2)");
my $count = $sth->execute (‘'De"Mont', "1973-01-12", undef, "eggroll™, 4);

In either case, the resulting query generated by DBI is as follows:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES("De\"Mont","1973-01-12" ,NULL, "eggroll*®,"4")

Note how DBI adds quotes around data values, even though there were none around the ? placeholder characters in
the original query string. (The placeholder mechanism adds quotes around numeric values, too, but that's okay,
because the MySQL server performs type conversion as necessary to convert strings to numbers.) Also note the
DBI convention that when you bind undef to a placeholder, DBI puts a NULL into the query and correctly refrains
from adding surrounding quotes.

DBI also provides a quote() method as an alternative to using placeholders. quote() is a database handle
method, so you must have a connection open to the server before you can use it. (This is because the proper
quoting rules cannot be selected until the driver is known; some databases have different quoting rules than
others.) Here's how to use quote() to create a query string for inserting a new record in the profi le table:

my $stmt = sprintf (
"INSERT INTO profile (name,birth,color,foods,cats)
VALUES(%s ,%s,%s ,%s ,%s)"",
$dbh->quote ('De"Mont™),
$dbh->quote (''1973-01-12"),
$dbh->quote (undef),
$dbh->quote (eggroll™),
$dbh->quote (4));
my $count = $dbh->do ($stmt);

The query string generated by this code is the same as when you use placeholders. The %s format specifiers are
written without surrounding quotes because quote() provides them automatically as necessary: undef values are
inserted as NULL without quotes, and non-undef values are inserted with quotes.

2.8.5 PHP

PHP has no placeholder capability, but does provide an addslashes() function that you can use to make values
safe for insertion into query strings. addslashes() escapes special characters such as quotes and backslashes, but
does not add surrounding quotes around values; you must add them yourself. We also need a convention for
specifying NULL values; let's try using unset() to force a variable to have "no value" (somewhat like Perl's undef
value). Here is some PHP code for adding De'Mont's profi le table record:

unset ($null); # create a "null" value
$stmt = sprintf ('
INSERT INTO profile (nhame,birth,color,foods,cats)
VALUES("%s" , "%s"™, "%s", "%s", "%s")",
addslashes ("'De"Mont'),
addslashes ('1973-01-12"),
addslashes ($null),
addslashes ('eggroll™),
addslashes (4));
$result_id = mysql_query ($stmt, $conn_id);

In the example, the %s format specifiers in the query string are surrounded with quotes because addslashes()
doesn't provide them. Unfortunately, the resulting query string looks like this, which isn't quite correct:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES("De\"Mont", "1973-01-12","","eggroll”,"4")

The quote in the name field has been escaped properly, but the "null™ (unset) value we passed for the color column
turned into an empty string, not NULL. Let's fix this by writing a helper function sql_quote() to use in place of
addslashes(). sgl_quote() is similar to addslashes(), but returns NULL (without surrounding quotes) for
unset values and adds quotes around the value otherwise. Here's what it looks like:

function sql_gquote ($str)
{

}

return (isset ($str) ? """ _ addslashes ($str) . """ : "NULL"™);

Because sql_quote() itself adds quote characters around the data value if they're needed, we can remove the
quotes that surround the %s format specifiers in the query string and generate the INSERT statement like this:

unset ($null); # create a "null" value
$stmt = sprintf
INSERT INTO profile (name,birth,color,foods,cats)
VALUES (%s ,%s ,%s ,%s,%s)"",
sql_quote ('De"Mont™),
sql_quote (*'1973-01-12"),
sql_quote ($null),
sql_quote (‘“'eggroll™),
sqgl_quote (4));
$result_id = mysql_query ($stmt, $conn_id);

After making the preceding changes, the value of $stmt includes a properly unquoted NULL value:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES("De\"Mont", "1973-01-12" ,NULL, "eggroll®,"4")

If you're using PHP 4, you have some additional options for handling NULL values and special characters. First,
PHP 4 has a special value NULL that is like an unset value, so you could use that in place of $nul 'l in the preceding
code that generated the INSERT statement. (However, to write code that works for both PHP 3 and PHP 4, use an
unset variable such as $null.) Second, as of PHP 4.0.3, an alternative to addslashes() is to use
mysqgl_escape_string(), which is based on the function of the same name in the MySQL C API. For example,
you could rewrite sql_quote() to use mysql_escape_string() like this:

function sql_quote ($str)
{

}

return (isset ($str) ? """ . mysql _escape_string ($str) . """ - "NULL™);

If you want a version that uses mysql_escape_string() if it's present and falls back to addslashes()
otherwise, write sql_quote() like this:

function sql_guote ($str)

{
if (lisset ($str))
return ('NULL™);
$func = function_exists ('mysql_escape_string™)
? "mysql_escape_string™
: "addslashes™;
return ("*" . $func (Bstr) . """);

Whichever version of sql_quote() you use, it's the kind of routine that is a good candidate for inclusion in a
library file. I'll assume its availability for PHP scripts in the rest of this book. You can find it as part of the
Cookbook_Utils.php file in the lib directory of the recipes distribution. To use the file, install it in the same
location where you put Cookbook.php and reference it from scripts like this:

include ""Cookbook_Utils.php";

2.8.6 Python

Python provides a placeholder mechanism that you can use for handling special characters in data values, as
described in Recipe 2.7. To add the profi le table record for De'Mont, the code looks like this:

try:
cursor = conn.cursor ()
cursor.execute ("™
INSERT INTO profile (nhame,birth,color,foods,cats)
VALUES (%s ,%s , %S ,%s , %S)
""" , ("'De"Mont', '1973-01-12", None, "eggroll™, 4))
print "%d row was inserted"” % cursor.rowcount
except:
print "Oops, the query failed”

The parameter binding mechanism adds quotes around data values where necessary. DB-API treats None as
logically equivalent to the SQL NULL value, so you can bind None to a placeholder to produce a NULL in the query
string. The query that is sent to the server by the preceding execute() call looks like this:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES("De\"Mont","1973-01-12" ,NULL, "eggroll*~,4)

With MySQLdb 0.9.1 or newer, an alternative method of quoting data values is to use the Iiteral () method. To
produce the INSERT statement for De'Mont by using literal (), do this:

try:
cursor = conn.cursor ()
str = "'
INSERT INTO profile (name,birth,color,foods,cats)
VALUES (%s , %s ,%s , %S ,%S)
""" % \
(conn.literal ('De"Mont'™), \
conn_literal ('1973-01-12"), \
conn.literal (None), \
conn.literal (eggroll™), \
conn.literal (4))
cursor.execute (str)
print "%d row was inserted"” % cursor.rowcount
except:
print "Oops, the query failed"

2.8.7 Java

Java provides a placeholder mechanism that you can use to handle special characters in data values, as described in
Recipe 2.7. To add the profi le table record for De'Mont, create a prepared statement, bind the data values to it,
then execute the statement:

PreparedStatement s;
int count;
s = conn.prepareStatement (
"INSERT INTO profile (name,birth,color,foods,cats)"
+ " VALUES(?,?,?,?2,?7)");
.setString (1, '"De"Mont');
.setString (2, "1973-01-12");
-setNull (3, java.sqgl.Types.CHAR);
-setString (4, "eggroll™);
.setint (5, 4);
count = s.executeUpdate ();
s.close (); // close statement

nonuononon

Each value-binding call here is chosen to match the data type of the column to which the value is bound:
setString() to bind a string to the name column, setint() to bind an integer to the cats column, and so forth.
(Actually, I cheated a bit by using setString() to treat the date value for birth as a string.) The setxxx()
calls add quotes around data values if necessary, so no quotes are needed around the ? placeholder characters in the
query string. One difference between JDBC and the other APIs is that you don't specify a special value to bind a
NULL to a placeholder by specifying some special value (such as undef in Perl or None in Python). Instead, you
invoke a special method setNul I(), where the second argument indicates the type of the column

(Java.sql . Types.CHAR for a string, java.sql . Types. INTEGER for an integer, etc.).

To achieve some uniformity in the value-binding calls, a helper function bindParam() can be defined that takes a
Statement object, a placeholder position, and a data value. This allows the same function to be used to bind any
data value. We can even use the convention that passing the Java nul I value binds a SQL NULL to the query. After
rewriting the previous example to use bindParam(), it looks like this:

PreparedStatement s;
int count;
s = conn.prepareStatement (
"INSERT INTO profile (name,birth,color,foods,cats)"

bindParam (s, 1, "'De"Mont'™);
bindParam (s, 2, '"1973-01-12"");
bindParam (s, 3, null);

bindParam (s, 4, "eggroll™);
bindParam (s, 5, 4);

count = s._executeUpdate ();
s.close (); // close statement

The implementation of bindParam() requires multiple functions, because the third argument can be of different
types, so we need one function for each type. The following code shows versions that handle integer and string
data values (the string version handles nul I and binds it to NULL):

public static void bindParam (PreparedStatement s, int pos, int val)

{
try

{

}
catch (Exception e) { /* catch and ignore */ }

s.setlnt (pos, val);

public static void bindParam (PreparedStatement s, iInt pos, String val)

{
try

{
if (val == null)
s.setNull (pos, java.sql.Types.CHAR);
else
s.setString (pos, val);

catch (Exception e) { /* catch and ignore */ }

To handle additional data types, you'd write other versions of bindParam() that accept arguments of the
appropriate type.

Sidebar 10. Special Characters in
Database, Table, and Column Names

In MySQL versions 3.23.6 and later, you can quote database, table, and column names by surrounding
them with backquotes. This allows you to include characters in such names that normally would be
illegal. For example, spaces in names are not allowed by default:

mysql> CREATE TABLE my table (i INT);
ERROR 1064 at line 1: You have an error in your SQL syntax
near “"table (i INT)" at line 1

To include the space, protect the name with backquotes:

mysqgl> CREATE TABLE "“my table™ (i INT);
Query OK, O rows affected (0.04 sec)

The backquote mechanism gives you wider latitude in choosing names, but makes it more difficult to
write programs correctly. (When you actually use a backquoted name, you must remember to include
the backquotes every time you refer to it.) Because of this additional bit of complexity, | prefer to avoid
using such names, and | recommend that you don't use them, either. If you want to ignore that advice, a
strategy you may find helpful in this situation is to define a variable that holds the name (including
backquotes) and then use the variable whenever you need to refer to the name. For example, in Perl,
you can do this:

$tbl_name = ""my table™";
$dbh->do ('DELETE FROM $tbl_name™);

2.9 Handling NULL Values in Result Sets

2.9.1 Problem

A query result includes NULL values, but you're not sure how to tell where they are.
2.9.2 Solution

Your API probably has some value that represents NULL by convention. You just have to know what it is and how
to test for it.

2.9.3 Discussion

Recipe 2.8 described how to refer to NULL values when you send queries to the database. In this section, we'll deal
instead with the question of how to recognize and process NULL values that are returned from the database. In
general, this is a matter of knowing what special value the API maps NULL values onto, or what function to call.
These values are shown in the following table:

Language NUL L-detection value or function
Perl undef
PHP an unset value
Python None
Java wasNul1()

The following sections show a very simple application of NULL value detection. The examples retrieve a result set
and print all values in it, mapping NULL values onto the printable string "NULL".

To make sure the profi le table has a row that contains some NULL values, use mysql to issue the following
INSERT statement, then issue the SELECT query to verify that the resulting row has the expected values:

mysql> INSERT INTO profile (name) VALUES("Juan®);
mysql> SELECT * FROM profile WHERE name = "Juan”;
TR - S T S ST S ST — T —— +
| id | name | birth | color | foods | cats |
ot — —— o ——_—— o ——_—— o ——_—— F T —— +
| 11 | Juan | NULL] NULL] NULL] NULL |
T Fomm——— Fomm——— R — Fom——— +

The id column might contain a different number, but the other columns should appear as shown.

2.9.4 Perl

In Perl DBI scripts, NULL is represented by undef. It's easy to detect such values using the defined() function,
and it's particularly important to do so if you use the -w option on the #! line that begins your script. Otherwise,
accessing undef values causes Perl to issue the following complaint:

Use of uninitialized value

To avoid this warning, test column values that might be undef with defined() before using them. The following
code selects a few columns from the profi le column and prints "NULL" for any undefined values in each row. This
makes NULL values explicit in the output without activating any warning messages:

my $sth = $dbh->prepare ("'SELECT name, birth, foods FROM profile™);
$sth->execute ();
while (my $ref = $sth->Fetchrow_hashref ())

{
printf "name: %s, birth: %s, foods: %s\n",
defined ($ref->{name}) ? $ref->{name} : "NULL",
defined ($ref->{birth}) ? $ref->{birth} : "NULL",
defined ($ref->{foods}) ? $ref->{foods} : "NULL";
}

Unfortunately, all that testing of column values is ponderous, and becomes worse the more columns there are. To
avoid this, you can test and set undefined values in a loop prior to printing them. Then the amount of code to
perform the tests is constant, not proportional to the number of columns to be tested. The loop also makes no
reference to specific column names, so it can be copied and pasted to other programs more easily, or used as the
basis for a utility routine:

my $sth = $dbh->prepare (*'SELECT name, birth, foods FROM profile™);
$sth->execute ();
while (my $ref = $sth->fetchrow_hashref ())

{
foreach my $key (keys (%{$ref}))
$Sref->{$Skey} = "NULL" unless defined ($ref->{$Skey});
}
printf "name: %s, birth: %s, foods: %s\n',
$ref->{name}, $ref->{birth}, $ref->{foods};
¥

If you fetch rows into an array rather than into a hash, you can use map() to convert any undef values:

my $sth = $dbh->prepare (''SELECT name, birth, foods FROM profile™);
$sth->execute ();
while (my @val = $sth->fetchrow_array ())

@val = map { defined ($) ? $_ - "NULL" } @val;
printf "name: %s, birth: %s, foods: %s\n",
$val[0], $val[1], $val[2];

2.9.5 PHP

PHP represents NULL values in result sets as unset values, so you can use the isset() function to detect NULL
values in query results. The following code shows how to do this:

$result_id = mysql_query ("'SELECT name, birth, foods FROM profile", $conn_id);
iT (I$result id)

die (""Oops, the query failed\n™);
while ($row = mysql_fetch _row ($result_id))

while (list ($key, $value) = each ($row))

{
if (lisset ($row[$key])) # test for unset value

$row[$key] = "NULL";

}
print ("name: $row[0], birth: $row[1], foods: $row[2]\n"");

mysqgl_free_result ($result_id);

PHP 4 has a special value NULL that is like an unset value. If you can assume your scripts will run under PHP 4,
you can test for NULL values like this:

if (Srow[$key] === NULL) # test for PHP NULL value
$row[$key] = ""NULL™";

Note the use of the === "triple-equal™ operator, which in PHP 4 means "exactly equal to." The usual == "equal to"
comparison operator is not suitable here; with ==, the PHP NULL value, the empty string, and 0 all compare equal to
each other.

2.9.6 Python

Python DB-API programs represent NULL values in result sets using None. The following example shows how to
detect NULL values:

try:
cursor = conn.cursor ()
cursor.execute ("'SELECT name, birth, foods FROM profile'™)
for row in cursor.fetchall ():

row = list (row) # convert non-mutable tuple to mutable list
for 1 in range (0, len (row)):
if row[i] == None: # is the column value NULL?

row[i] = "NULL"
print "name: %s, birth: %s, foods: %s"™ % (row[0], row[1l], row[2])
cursor.close ()
except:
print ""Oops, the query failed"

The inner loop checks for NULL column values by looking for None and converts them to the string "NULL". Note
how the example converts row to a mutable object prior to the loop; that is done because fetchal I() returns
rows as sequence values, which are non-mutable (read-only).

2.9.7 Java

For JDBC programs, if it's possible for a column in a result set to contain NULL values, it's best to check for them
explicitly. The way to do this is to fetch the value and then invoke wasNul I), which returns true if the column is
NULL and false otherwise. For example:

Object obj = rs.getObject (index);
if (rs.wasNull ())
{ /7* the value®s a NULL */ }

The preceding example uses getObject(), but the principle holds for other getxxx() calls as well.

Here's an example that prints each row of a result set as a comma-separated list of values, with each NULL value
printed as the string "NULL":

Statement s = conn.createStatement ();

s.executeQuery ('SELECT name, birth, foods FROM profile™);
ResultSet rs = s.getResultSet ();

ResultSetMetaData md = rs.getMetaData ();

int ncols = md.getColumnCount ();

while (rs.next ()) // loop through rows of result set

{
for (int 1 = 0; 1 < ncols; i++) // loop through columns
{
String val = rs.getString (i+l);
if (i >0)
System.out.print (', ");
ifT (rs.wasNull ())
System.out.print ('NULL™);
else
System.out.print (val);
}
System.out.printin ();
rs.close (); // close result set
s.close (); // close statement

2.10 Writing an Object-Oriented MySQL Interface for PHP
2.10.1 Problem

You want an approach for writing PHP scripts that is less tied to PHP's native MySQL-specific functions.

2.10.2 Solution
Use one of the abstract interfaces that are available, or write your own.

2.10.3 Discussion

You may have noticed that the Perl, Python, and Java operations that connect to the MySQL server each return a
value that allows you to process queries in an object-oriented manner. Perl has database and statement handles,
Python has connection and cursor objects, and Java uses objects for everything in sight: connections, statements,
result sets, and metadata. These object-oriented interfaces all are based on a two-level architecture.

The top level of this architecture provides database-independent methods that implement database access in a
portable way that's the same no matter which database management system you're using, be it MySQL,
PostgreSQL, Oracle, or whatever. The lower level consists of a set of drivers, each of which implements the details
for a particular database system. The two-level architecture allows application programs to use an abstract
interface that is not tied to the details involved with accessing any particular database server. This enhances
portability of your programs, because you just select a different lower-level driver to use a different type of
database. That's the theory, at least. In practice, perfect portability can be somewhat elusive:

e The interface methods provided by the top level of the architecture are consistent regardless of the driver
you use, but it's still possible to issue SQL statements that contain constructs supported only by a particular
server. For MySQL, a good example is the sHow statement that provides information about database and
table structure. If you use sHow with a non-MySQL server, an error is the likely result.

o Lower-level drivers often extend the abstract interface to make it more convenient to get at database-
specific features. For example, the MySQL driver for DBI makes the most recent AUTO_INCREMENT value
available as an attribute of the database handle so that you can access it as $dbh->{mysql_insertid}.
These features often make it easier to write a program initially, but at the same time make it less portable
and require some rewriting should you port the program for use with another database system.

Despite these factors that compromise portability, the two-level architecture provides significant benefits for Perl,
Python, and Java programmers. It would be nice to use this approach when writing PHP scripts, too, but PHP itself
provides no such support. Its interface to MySQL consists of a set of functions, and these are inherently non-
portable because their names all are of the form mysql_xxx(). To work around this, you can write your own
database abstraction mechanism.

That is the purpose of this section. It shows how to write an object-oriented PHP interface that hides many
MySQL-specific details and is relatively database independent—certainly more so than PHP's function-based
MySQL interface. As discussed here, the interface is written specifically for MySQL, but if you want to adapt it
for use with a different database, you should be able to do so by supplying a different set of underlying class
methods.

If you want to write PHP scripts in a database-independent fashion, but prefer not to write your own interface, you
can use a third-party abstraction interface. One such is the database-access class that is a part of the PHP Extension
and Add-on Repository (PEAR). PEAR is included with current releases of PHP 4.

The following discussion shows how to write a MySQL_Access class that implements an object-oriented interface
to MySQL, and a Cookbook_DB_Access class that is built on top of MySQL_Access but automatically supplies
default values for connecting to the cookbook database. (If you're not familiar with PHP classes, you may want to

consult the "Classes and Objects" chapter of the PHP manual for background information.) The primary goal of
this class interface is to make it easier to use MySQL by reducing the number of operations your scripts must
perform explicitly:

e The interface automatically establishes a connection to the MySQL server if you issue a query without
connecting first; you need never issue a connect call explicitly. The connection parameters must be
specified somehow, of course, but as we'll see, that can be done automatically as well.

o The interface provides automatic error checking for MySQL calls. This is more convenient than checking
for them yourself, and helps eliminate one of the most common problems with PHP scripts: failure to check
for database errors on a consistent basis. The default behavior is to exit with an error message when a
problem occurs, but you can override that if you want to handle errors yourself.

e When you reach the end of a result set while fetching rows, the class automatically releases the set.

The class-based interface also provides a method for quoting data values to make them safe for use in queries, and
a placeholder mechanism so you don't need to do any quoting at all if you don't want to. These capabilities are not
present in PHP's native function-based interface.

The following example illustrates how using an object-oriented interface changes the way you write PHP scripts to
access MySQL, compared to writing function-based scripts. A script based on PHP's native function calls typically
accesses MySQL something like this:

iT (1($conn_id = mysql _connect (localhost", "cbuser'™, ''cbpass'™)))
die ("Cannot connect to database\n™);
it (Imysql_select _db (*“cookbook™™, $conn_id))
die ('Cannot select database\n');
$query = "UPDATE profile SET cats=cats+1 WHERE name = "Fred"";
$result_id = mysql_query ($query, $conn_id);
if (I$result_id)
die (mysqgl_error ($conn_id));
print (mysql_affected_rows ($conn_id) . " rows were updated\n™);
$query = "SELECT id, name, cats FROM profile";
$result_id = mysql_query ($query, $conn_id);
if (I$result_id)
die (mysqgl_error ($conn_id));
while ($row = mysql_fetch _row ($result_id))
print (""id: $row[0], name: $row[1l], cats: $row[2]\n");
mysqgl_free result ($result_id);

A first step toward eliminating some of that code is to replace the first few lines by calling the
cookbook_connect() function from the PHP library file, Cookbook.php, developed in Recipe 2.4. That function
encapsulates the connection and database selection operations:

include *Cookbook.php™;
$conn_id = cookbook connect ();
$query = "UPDATE profile SET cats=cats+1 WHERE name = "Fred"";
$result_id = mysql_query ($query, $conn_id);
if (I$result_id)
die (mysqgl_error ($conn_id));
print (mysql_affected_rows ($conn_id) . " rows were updated\n™);
$query = ""SELECT id, name, cats FROM profile';
$result_id = mysql_query ($query, $conn_id);
if (I$result_id)

die (mysqgl_error ($conn_id));
while ($row = mysql_fetch _row ($result_id))

print (""id: $row[0], name: $row[1l], cats: $row[2]\n"");
mysql_free_result ($result_id);

A class-based interface can carry encapsulation further and shorten the script even more by eliminating the need to
connect explicitly, to check for errors, or to close the result set. All of that can be handled automatically:

include ""Cookbook_DB_Access.php';
$conn = new Cookbook DB Access;
$query = "UPDATE profile SET cats=cats+1l WHERE name = "Fred"";
$conn->issue_query ($query);
print ($conn->num_rows . " rows were updated\n');
$query = "SELECT id, name, cats FROM profile";
$conn->issue_query ($query);
while ($row = $conn->fetch_row ())
print (""id: $row[0], name: $row[1l], cats: $row[2]\n");

A class interface can make MySQL easier to use by reducing the amount of code you need to write when creating
new scripts, but it has other benefits as well. For example, it can also serve as a recipe translation aid. Suppose a
program in a later chapter is shown in Perl, but you'd rather use in it PHP and there is no PHP version on the
Cookbook web site. Perl DBI is object oriented, so you'll likely find it easier to translate a Perl script into a PHP
script that is object oriented, rather than into one that is function based.

2.10.4 Class Overview

The class interface implementation uses the PHP recipes and techniques developed earlier in this chapter, so you
should familiarize yourself with those. For example, the class interface needs to know how to make connections to
the server and process queries, and we'll use include (library) files to encapsulate the interface so that it can be used
easily from multiple PHP scripts.

The interface shown here works only with PHP 4. This is something that is not true of PHP's native MySQL
routines, which work both with PHP 3 and PHP 4. The restriction is necessitated by the use of a few constructs that
are not available or do not work properly in PHP 3. Specifically, the interface assumes the availability of the
include_once statement and the PHP NULL value. It also assumes that count() correctly counts unset values in
arrays, which is true only for PHP 4.

The implementation strategy involves two classes. The first is a generic base class MySQL_Access that provides the
variables and methods needed for using MySQL. The second is a derived class Cookbook_DB_Access that has
access to everything in the base class but automatically sets up connection parameters specifically for the
cookbook database so we don't have to do that ourselves. An alternative implementation might use just a single
class and hardwire the cookbook database parameters directly into it. However, writing the base class to be generic
allows it to be used more easily for scripts that access a database other than cookbook. (For such scripts, you'd just
write another derived class that uses the base class but provides a different set of connection parameters.)

A PHP class definition begins with a class line that specifies the class name, then defines the variables and
methods associated with the class. An outline of the base class, MySQL_Access, looks like this:

class MySQL_Access

oo

var $host_name = "
var $user_name =
var $password =
var $db_name = ""'';
var $conn_id =
var $errno = 0;
var $errstr =
var $halt_on_error = 1;

var $query pieces = array ();
var $result _id = 0;

var $num_rows = 0;

var $row = array ();

method definitions ...

} # end MySQL_Access

The class definition begins with several variables that are used as follows:

The first few variables hold the parameters for connecting to the MySQL server ($host_nanme,
$user_name, $password, and $db_name). These are empty initially and must be set before attempting a
connection.

Once a connection is made, the connection identifier is stored in $conn_id. Its initial value, 0, means "no
connection.” This allows a class instance to determine whether or not it has connected to the database
server yet.

$errno and serrstr hold error information; the class sets them after each MySQL operation to indicate
the success or failure of the operation. The initial values, and the empty string, mean "no error." For errors
that occur but not as a result of interacting with the server, $errno is set to -1, which is a nonzero error
value never used by MySQL. This can happen, for example, if you use placeholder characters in a query
string but don't provide the correct number of data values when you bind them to the placeholders. In that
case, the class detects the error without sending anything to the server.

$halt_on_error determines whether or not to terminate script execution when an error occurs. The default
is to do so. Scripts that want to perform their own error-checking can set this to zero.

$query_pieces is used to hold a query string for prepared statements and parameter binding. (I'll explain
later why this variable is an array.)

$result_id, $num_rows, and $row are used during result set processing to hold the result set identifier, the
number of rows changed by or returned by the query, and the current row of the result set.

In PHP, you can designate a constructor function in a class definition to be called automatically when
new class instances are created. This is done by giving the function the same name as the class. You
might do this, for example, if you need to initialize an object's variables to non-constant values. (In
PHP 4, object variables can only take constant initializers.) The MySQL_Access class has no constructor
because its variables all have constant initial values.

Sidebar 11. PHP Class Constructor
Functions

The "method definitions™ line near the end of the class outline is where we'll put the functions that connect to the
MySQL server, check for errors, issue queries, and so forth. We'll fill in that part shortly, but before doing so, let's
get a sense of how the class can be used. We can put the code for the class in an include file, MySQL_Access.php,
and install it in a directory that PHP searches when looking for include files (for example,
lusr/local/apache/lib/php, as described in Recipe 2.4.) Then we can use the file by referencing it with an include
statement, creating an instance of the class to get a connection object $conn, and setting up the connection
parameters for that object:

include ""MySQL_Access.php™; # include the MySQL_Access class
$conn = new MySQL_Access; # create new class object
$conn->host_name = "localhost"; # initialize connection parameters
$conn->db_name = "‘cookbook™;

$conn->user_name = '‘cbuser";

$conn->password = '‘cbpass";

However, using the class this way wouldn't really make it very convenient to connect to the server, due to the need
to write all those assignment statements that set the connection parameters. Here's where a derived class that uses
the base class comes in handy, because the derived class can be written to set the parameters automatically. To that
end, let's create a class, Cookbook_DB_Access, that extends MySQL_Access by supplying parameters for
connecting to the cookbook database. Then you can write scripts that prepare to access the cookbook database
with just two lines of code:

include ""Cookbook_DB_Access.php';
$conn = new Cookbook DB Access;

The implementation of Cookbook_DB_Access is quite simple. Create a file, Cookbook DB_Access.php, that looks
like this:

include_once ""MySQL_Access.php™;

class Cookbook DB_Access extends MySQL_Access

{
override default class variable values
var $host_name = "localhost";
var $user_name = "‘cbuser’;
var $password = ‘‘cbpass';
var $db_name = "'‘cookbook';
}

The class line names the class, Cookbook_DB_Access, and the extends clause indicates that it's based on the
MySQL_Access class. Extending a class this way is called subclassing the base class, or creating a derived class
from the base class. The new class definition is almost trivial, containing only variable assignments for connection
parameters. These override the (empty) values that are supplied by the base class. The effect is that when you
create an instance of the Cookbook_DB_Access class, you get an object that's just like a MySQL_Access object,
except that the connection parameters are set automatically for connecting to the cookbook database.

Now you can see more clearly why we left the connection parameters in the MySQL_Access class empty rather than
setting them for accessing the cookbook database. By leaving them blank, we create a more generic class that can

be extended for any number of databases by creating different derived classes. Cookbook_DB_Access is one such
class. If you're writing a set of scripts that use a different database, derive another extended class that supplies
appropriate connection parameters for that database. Then have the scripts use the second extended class rather
than Cookbook _DB_Access.php.

Incidentally, the reason that Cookbook _DB_Access.php includes MySQL_Access.php is so that you don't need to.
When your scripts include Cookbook DB_Access.php, they get MySQL_Access.php "for free." The include_once
statement is used rather than include to prevent duplicate-definition problems from occurring if your scripts
happen to include MySQL_Access.php anyway.

2.10.5 Connecting and Disconnecting
Now we need to write the methods of the base class, MySQL_Access, that interact with MySQL. These go in the

MySQL_Access.php source file. First, we need a connect() method that sets up a connection to the MySQL
server:

function connect ()

{
$this->errno = 0; # clear the error variables
$this->errstr = "';
if ($this->conn_id == 0) # connect if not already connected
{

$this->conn_id = @mysql _connect ($this->host name,
$this->user_name,
$this->password);

use mysql_errno()/mysqgl_error() if they work for

connection errors; use $php_errormsg otherwise

if (1$this->conn_id)

{
mysql_errno() returns nonzero if It"s
functional for connection errors
it (mysql _errno ())
{
$this->errno = mysgl_errno ();
$this->errstr = mysql_error ();
s
else
$this->errno = -1; # use alternate values
$this->errstr = $php_errormsg;
bs
$this->error ('Cannot connect to server™);
return (FALSE);
b

select database 1T one has been specified
if (isset ($this->db_name) && $this->db_name 1= '"'")

if (1@mysql_select_db ($this->db_name, $this->conn_id))

$this->errno = mysqgl_errno ();
$this->errstr = mysql_error ();
$this->error ('Cannot select database');
return (FALSE);

}

return ($this->conn_id);

The connect() method checks for an existing connection and attempts to establish one only if it hasn't already
done so. connect() does this so other class methods that require a connection can call this method to make sure
there is one. Specifically, we can write the query-issuing method to call connect() before sending a query. That
way, all a script has to do is create a class object and start issuing queries; the class methods automatically take
care of making the connection for us. By writing the class this way, it becomes unnecessary for scripts that use the
class ever to establish a connection explicitly.

For a successful connection attempt, or if a connection is already in place, connect() returns the connection
identifier (a non-FALSE value). If an error occurs, connect() calls error() and one of two things can happen:

e If shalt_on_error isset, error() prints a message and terminates the script.
e Otherwise, error() does nothing and returns to connect(), which returns FALSE.

Note that if a connection failure occurs, connect() tries to use mysql_errno() and mysgl_error() if they are
the versions provided in PHP 4.0.6 and up that return usable information for mysgl_connect() errors (see
Recipe 2.3). Otherwise, it sets $errno to -1 and $errstr to $php_errormsg.

There is also a disconnect() method corresponding to connect() in case you want to disconnect explicitly.
(Otherwise, PHP closes the connection for you when your script exits.) The method calls mysql_close() ifa
connection is open:

function disconnect ()

if ($this->conn_id != 0) # there®"s a connection open; close it

{
mysql_close ($this->conn_id);
$this->conn_id = 0;

}
return (TRUE);

2.10.6 Error Handling

MySQL_Access methods handle errors by calling the error() method. The behavior of this method depends on
the value of the shalt_on_error variable. If $halt_on_error is true (nonzero), error() prints an error
message and exits. This is the default behavior, which means you never need to check for errors if you don't want
to. If you disable shalt_on_error by setting it to zero, error() simply returns to its caller, which then can pass
back an error return status to its own caller. Thus, error-handling code within MySQL_Access typically looks like
this:

if (some error occurred)

$this->error (“'some error occurred™);
return (FALSE);

If shalt_on_error is enabled when an error occurs, error() is invoked and terminates the script. Otherwise, it
returns and the return() statement that follows it is executed.

To write code that does its own error checking, disable shalt_on_error. In that case, you may also want to access
the $errno and $errstr variables, which hold the MySQL numeric error code and descriptive text message. The
following example shows how to disable $shalt_on_error for the duration of a single operation:

$conn->halt_on_error = 0;
print ("'Test of error-trapping:\n');
it (I$conn->issue_query ($query_str))
print (""Hey, error $conn->errno occurred: $conn->errstr\n');
$conn->halt_on_error = 1;

When error() prints a message, it also displays the values of the error variables if $serrno is nonzero. error()
converts the message to properly escaped HTML, on the assumption that the class will be used in a web
environment:

function error ($msg)

iT (I$this->halt_on_error) # return silently
return;
$msg -= "\n"';
if ($this->errno) # if an error code is known, include error info
$msg .= sprintf (Error: %s (%d)\n', $this->errstr, $this->errno);
die (nl2br (htmlspecialchars ($msg)));

2.10.7 Issuing Queries and Processing the Results

Now we get to the heart of the matter, issuing queries. To execute a statement, pass it to issue_query():

function issue_query ($query_str)

it (I$this->connect ()) # establish connection to server if
return (FALSE); # necessary

$this->num_rows = 0;
$this->result_id = mysgl _query ($query_str, $this->conn_id);
$this->errno = mysql_errno ();
$this->errstr = mysql_error ();
if ($this->errno)
{
$this->error ('Cannot execute query: $query_str');
return (FALSE);
b
get number of affected rows for non-SELECT; this also returns
number of rows for a SELECT
$this->num_rows = mysql_affected_rows ($this->conn_id);
return ($this->result_id);

issue_query() first calls connect() to make sure that a connection has been established before it sends the
query to the server. Then it executes the query, sets the error variables (which will be 0 and the empty string if no
error occurs), and checks whether or not the query succeeded. If it failed, issue_query() takes the appropriate
error-handling action. Otherwise, it sets $num_rows and the result set identifier becomes the return value. For a
non-SELECT query, $num_rows indicates the number of rows changed by the query. For a SELECT query, it
indicates the number of rows returned. (There's a little bit of cheating here. mysql_affected_rows() really is
intended only for non-SELECT statements, but happens to return the number of rows in the result set for SELECT
queries.)

If a query produces a result set, you'll want to fetch its rows. PHP provides several functions for this, which were
discussed in Recipe 2.5: mysql_fetch_row(), mysql_fetch_array(), and mysql_fetch_object(). These
functions can be used as the basis for corresponding MySQL_Access methods fetch_row(), fetch_array(),
and fetch_object(). Each of these methods fetches the next row and returns it, or, if there are no more rows
left, releases the result set and returns FALSE. They also set the error variables automatically on every call. The
fetch_row() method is shown here; fetch_array() and fetch_object() are very similar:

Fetch the next row as an array with numeric indexes

function fetch_row ()
{
$this->row = mysql_fetch_row ($this->result_id);
$this->errno = mysql_errno ();
$this->errstr = mysql_error ();
if ($this->errno)
{
$this->error (“'fetch_row error');
return (FALSE);
b
iT (is_array ($this->row))
return ($this->row);
$this->free result ();
return (FALSE);

The free_result() method used by the row-fetching methods releases the result set, if there is one:

function free result ()

if ($this->result_id)

mysql_free_result ($this->result_id);
$this->result_id = 0;
return (TRUE);

Freeing the result set automatically when the last record has been fetched is one way the class interface simplifies
MySQL access, compared to the PHP function-based interface. However, any script that fetches only part of a
result set should invoke free_result() itself to release the set explicitly.

To determine whether or not a value from a result set represents a NULL value, compare it to the PHP NULL value by
using the triple-equals operator:

if ($val === NULL)
{

}

$val is a NULL value

Alternatively, use isset():

if (lisset ($val))
{

}

$val is a NULL value

At this point, enough machinery is present in the class interface that it is usable for writing scripts that issue
queries and process the results:

instantiate connection object
include ""Cookbook DB_Access.php™;
$conn = new Cookbook DB Access;

1ssue query that returns no result set

$query = "UPDATE profile SET cats=cats+1l WHERE name = "Fred"";
$conn->issue_query ($query);

print ($conn->num_rows . " rows were updated\n');

1ssue queries that fetch rows, using each row-fetching method
$query = "SELECT id, name, cats FROM profile';
$conn->issue_query ($query);
while ($row = $conn->Fetch_row ())

print ("id: $row[0], name: $row[1l], cats: $row[2]\n");
$conn->issue_query ($query);
while ($row = $conn->fetch_array ())

{
print (""id: $row[0], name: $row[1l], cats: $row[2]\n"");
print (""id: $row[id], name: $row[name], cats: $row[cats]\n"");

}
$conn->issue_query ($query);
while ($row = $conn->fetch_object ())
print (""id: $row->id, name: $row->name, cats: $row->cats\n');

2.10.8 Quoting and Placeholder Support

In Recipe 2.9, we developed a PHP sql_quote() function for PHP to handle quoting, escaping, and NULL (unset)
values, so that any value can be inserted easily into a query:

function sql_guote ($str)

if (lisset ($str))
return ('NULL™);
$func = function_exists ('mysql_escape_string'™)

? "mysql_escape_string"
. "addslashes™;
return ("*" . $func ($str) . """);

If we add sql_quote() to the MySQL_Access class, it becomes available automatically to any class instance as an
object method and you can construct query strings that include properly quoted values like so:

$stmt = sprintf ("INSERT INTO profile (name,birth,color,foods,cats)
VALUES (%s , %s ,%s ,%s,%s)"",

$conn->sgl_quote ('De"Mont™),
$conn->sgl_quote (*'1973-01-12"),
$conn->sql_quote (NULL),
$conn->sql_quote ('eggroll™),
$conn->sql_quote (4));

$conn->issue_query ($stmt);

In fact, we can employ the sql_quote() method as the basis for a placeholder emulation mechanism, to be used
as follows:

1. Begin by passing a query string to the prepare_query() method.

2. Indicate placeholders in the query string by using 2 characters.

3. Execute the query and supply an array of values to be bound to the query, one value per placeholder. (To
bind NULL to a placeholder, pass the PHP NULL value.)

One way to perform parameter binding is to do a lot of pattern matching and substitution in the query string
wherever ? occurs as a placeholder character. An easier approach is simply to break the query string at the 2
characters, then glue the pieces back together at query execution time with the properly quoted data values inserted
between the pieces. Splitting the query also is an easy way to find out how many placeholders there are (it's the
number of pieces, minus one). That's useful for determining whether or not the proper number of data values is
present when it comes time to bind those values to the placeholders.

The prepare_query() method is quite simple. All it does is split up the query string at 2 characters, placing the
result into the $query_pieces array for later use at parameter-binding time:

function prepare_query ($query)

$this->query pieces = explode ('?", $query);
return (TRUE);

We could invent new calls for binding data values to the query and for executing it, but it's also possible to modify
issue_query() a little, to have it determine what to do by examining the type of its argument. If the argument is
a string, it's interpreted as a query that should be executed directly (which is how issue_query() behaved
before). If the argument is an array, it is assumed to contain data values to be bound to a previously prepared
statement. With this change, issue_query() looks like this:

function issue_query ($arg = ")

it ($arg == ") # 1T no argument, assume prepared statement
$arg = array (); # with no values to be bound

it (I$this->connect ()) # establish connection to server if
return (FALSE); # necessary

if (is_string ($arg)) # $arg is a simple query

$query_str = $arg;
else if (is_array ($arg)) # $arg contains data values for placeholders

{
if (count ($arg) !'= count ($this->query_pieces) - 1)
{

$this->errno = -1;
$this->errstr = "data value/placeholder count mismatch";
$this->error ('Cannot execute query');
return (FALSE);
}
1Insert data values into query at placeholder
positions, quoting values as we go
$query_str = $this->query_pieces[0];
for ($i = 0; $i < count ($arg); $i++)

{
$query_str .= $this->sql_quote ($arg[$i])
. $this->query_pieces[$i+1];
}
}
else # $arg is garbage
{
$this->errno = -1;
$this->errstr = "unknown argument type to issue query";
$this->error ('Cannot execute query');
return (FALSE);
}

$this->num_rows = 0;

$this->result_id = mysgl_query ($query_str, $this->conn_id);
$this->errno = mysgl_errno ();

$this->errstr = mysql_error ();

if ($this->errno)

$this->error (“'Cannot execute query: $query str™);
return (FALSE);
by
get number of affected rows for non-SELECT; this also returns
number of rows for a SELECT
$this->num_rows = mysql affected rows ($this->conn_id);
return ($this->result_id);

Now that quoting and placeholder support is in place, the class provides three ways of issuing queries. First, you
can write out the entire query string literally and perform quoting, escaping, and NULL handling yourself:

$conn->issue_query (""INSERT INTO profile (name,birth,color,foods,cats)
VALUES("De\"Mont","1973-01-12" ,NULL, "eggroll=,"4")");

Second, you can use the sql_quote() method to insert data values into the query string:

$stmt = sprintf ("INSERT INTO profile (name,birth,color,foods,cats)
VALUES (%s, %s ,%s ,%s,%s)"",

$conn->sqgl_quote ('De"Mont™),
$conn->sgl_quote (*'1973-01-12"),
$conn->sql_quote (NULL),
$conn->sql_quote (“'eggroll'™),
$conn->sql_quote (4));

$conn->issue_query ($stmt);

Third, you can use placeholders and let the class interface handle all the work of binding values to the query:

$conn->prepare_query (""INSERT INTO profile (name,birth,color,foods,cats)
VALUES(?,?,?,?2,?2)");
$conn->issue_query (array ("'De"Mont', "1973-01-12", NULL, "eggroll™, 4));

The MySQL_Access and Cookbook_DB_Access classes now provide a reasonably convenient means of writing PHP
scripts that is easier to use than the native MySQL PHP calls. The class interface also includes placeholder support,
something that PHP does not provide at all.

The development of these classes illustrates how you can write your own interface that hides MySQL-specific
details. The interface is not without its shortcomings, naturally. For example, it allows you to prepare only one

statement at a time, unlike DBI and JDBC, which support multiple simultaneous prepared statements. Should you
require such functionality, you might consider how to reimplement MySQL_Access to provide it.

2.11 Ways of Obtaining Connection Parameters

2.11.1 Problem

You need to obtain connection parameters for a script so that it can connect to a MySQL server.

2.11.2 Solution

There are lots of ways to do this. Take your pick.

2.11.3 Discussion

Any program that connects to MySQL needs to specify connection parameters such as the username, password,
and hostname. The recipes shown so far have put connection parameters directly into the code that attempts to
establish the connection, but that is not the only way for your programs to obtain the parameters. This section

briefly surveys some methods you can use, then shows how to implement two of them.

e Hardwire the parameters into the program.

The parameters can be given either in the main source file or in a library file that is used by the program.
This is convenient because users need not enter the values themselves. The flip side, of course, is that it's
not very flexible. To change the parameters, you must modify your program.

o Ask for the parameters interactively.

In a command-line environment, you can ask the user a series of questions. In a web or GUI environment,
this might be done by presenting a form or dialog. Either way, this gets to be tedious for people who use the
program frequently, due to the need to enter the parameters each time.

e Get the parameters from the command line.

This method can be used either for commands that you run interactively or that are run from within a script.
Like the method of obtaining parameters interactively, this requires you to supply parameters each time you
use MySQL, and can be similarly tiresome. (A factor that significantly mitigates this burden is that many
shells allow you to recall commands from your history list for reexecution.)

e Get the parameters from the execution environment.

The most common way of using this method is to set the appropriate environment variables in one of your
shell's startup files (such as .cshrc for csh; .tcshrc for tesh; or .profile for sh, bash, and ksh). Programs that
you run during your login session then can get parameter values by examining their environment.

e Get the parameters from a separate file.

With this method, you store information such as the username and password in a file that programs can
read before connecting to the MySQL server. Reading parameters from a file that's separate from your
program gives you the benefit of not having to enter them each time you use the program, while allowing
you to avoid hardwiring the values into the program itself. This is especially convenient for interactive
programs, because then you need not enter parameters each time you run the program. Also, storing the
values in a file allows you to centralize parameters for use by multiple programs, and you can use the file
access mode for security purposes. For example, you can keep other users from reading the file by setting
its mode to allow access only to yourself.

The MySQL client library itself supports an option file mechanism, although not all APIs provide access to
it. For those that don't, workarounds may exist. (As an example, Java supports the use of properties files
and supplies utility routines for reading them.)

e Use a combination of methods.

It's often useful to combine some of the preceding methods, to afford users the option of providing
parameters different ways. For example, MySQL clients such as mysql and mysqladmin look for option
files in several locations and read any that are present. Then they check the command-line arguments for
further parameters. This allows users to specify connection parameters in an option file or on the command
line.

These methods of obtaining connection parameters do involve some security issues. Briefly summarized, these
issues are:

e Any method that stores connection parameters in a file may result in compromise unless the file is
protected against read access by unauthorized users. This is true whether parameters are stored in a source
file, an option file, or a script that invokes a command and specifies the parameters on the command line.
(Web scripts that can be read only by the web server don't qualify as secure if other users have
administrative access to the server.)

o Parameters specified on the command line or in environment variables are not particularly secure. While a
program is executing, its command-line arguments and environment may be visible to other users who run
process status commands such as ps -e. In particular, storing the password in an environment variable
perhaps is best limited to use in situations where you're the only user on the machine or you trust all other
users.

The rest of this section shows how to process command-line arguments to get connection parameters, and how to
read parameters from option files.

2.11.4 Getting Parameters from the Command Line

The usual MySQL convention for command-line arguments (that is, the convention followed by standard MySQL
clients such as mysql) is to allow parameters to be specified using either a short option or a long option. For
example, the username cbuser can be specified either as -u cbuser (or -Ucbuser) or --user=cbuser. In addition,
for the options that specify the password (-p or --password), the password value may be omitted after the option
name to indicate that the program should prompt for the password interactively.

The next set of example programs shows how to process command arguments to obtain the hostname, username,
and password. The standard flags for these are -h or --host, -u or --user, and -p or --password. You can write your
own code to iterate through the argument list, but in general, it's much easier to use existing option-processing
modules written for that purpose. The programs presented here are implemented using a getopt()-style function
for each API, with the exception of PHP. Insofar as possible, the examples mimic the behavior of the standard
MySQL clients. (No example program is provided for PHP, because few PHP scripts are written for use from the
command line.)

2.11.4.1 Perl

Perl passes command-line arguments to scripts in the @ARGV array, which can be processed using the GetOptions(
) function of the Getopt::Long module. The following program shows how to parse the command arguments for
connection parameters. If a password option is specified with no following argument, the script prompts the user
for the password value.

#1 /Jusr/bin/perl -w
cmdline.pl - demonstrate command-line option parsing in Perl

use strict;
use DBI;

use Getopt::Long;
$Getopt::Long::ignorecase = 0; # options are case sensitive
$Getopt::Long::bundling = 1; # allow short options to be bundled

connection parameters - all missing (undef) by default
my ($host_name, $password, $user_name);

GetOptions (

=s means a string argument is required after the option
-s means a string argument is optional after the option

"host|h=s" => \$host_name,
"password]p:s" => \$password,
"user|u=s" => \$user_name

) or exit (1); # no error message needed; GetOptions() prints its own

solicit password if option specified without option value
if (defined ($password) && $password eq ')

{
turn off echoing but don"t interfere with STDIN
open (TTY, */dev/tty') or die "Cannot open terminal\n';
system ('stty -echo < /dev/tty");
print STDERR "Enter password: *
chomp ($password = <TTY>);
system (‘'stty echo < /dev/tty");
close (TTY);
print STDERR '\n';
}

construct data source name
my $dsn = "DBI:mysql:database=cookbook™;
$dsn .= ";host=$host _name"™ if defined ($host_name);

connect to server

my $dbh = DBI->connect ($dsn, $user_name, $password,
{PrintError => 0, RaiseError => 1});

print "Connected\n';

$dbh->disconnect ();
print "Disconnected\n";
exit (0);

The arguments to GetOptions() are pairs of option specifiers and references to the script variables into which
option values should be placed. An option specifier lists both the long and short forms of the option (without
leading dashes), followed by =s if the option requires a following argument or :s if it may be followed by an
argument. For example, ""host|h=s" allows both --host and -h and indicates that a string argument is required
following the option. You need not pass the @ARGV array because GetOptions() uses it implicitly. When
GetOptions() returns, @ARGV contains any remaining arguments following the last option.

The Getopt::Long module's $sbundl ing variable affects the interpretation of arguments that begin with a single
dash, such as -u. Normally, we'd like to accept both -u cbuser and -ucbuser as the same thing, because that's how
the standard MySQL clients act. However, if $bundling is zero (the default value), GetOptions() interprets -
ucbuser as a single option named "ucbuser”. By setting $bundling to nonzero, GetOptions() understands both
-U cbuser and -ucbuser the same way. This happens because it interprets an option beginning with a single dash
character by character, on the basis that several single-character options may be bundled together. For example,
when it sees -ucbuser, it looks at the u, then checks whether or not the option takes a following argument. If not,
the next character is interpreted as another option letter. Otherwise, the rest of the string is taken as the option's
value. For -ucbuser, u does take an argument, so GetOptions() interprets cbuser as the option value.

One problem with Getoptions() is that it doesn't support -p without a password the same way as the standard
MySQL client programs. If -p is followed by another option, GetOptions() correctly determines that there is no

password value present. But if -p is followed by a non-option argument, it misinterprets that argument as the
password. The result is that these two invocations of cmdline.pl are not quite equivalent:

% cmdline.pl -h localhost -p -u cbuser xyz

Enter password:

% cmdline.pl -h localhost -u cbuser -p xyz
DBI->connect(database=cookbook;host=localhost) failed: Access denied for
user: “chbuser@localhost® (Using password: YES) at ./cmdline.pl line 40

For the first command, GetOptions() determines that no password is present and the script prompts for one. In
the second command, GetOptions() has taken xyz as the password value.

A second problem with cmdline.pl is that the password-prompting code is Unix specific and doesn't work under
Windows. You could try using Term::ReadKey, which is a standard Perl module, but it doesn't work under
Windows, either. (If you have a good password prompter for Windows, you might consider sending it to me for
inclusion in the recipes distribution.)

2.11.4.2 PHP

PHP provides little support for option processing from the command line because it is used predominantly in a web
environment where command-line arguments are not widely used. Hence, I'm providing no getopt()-style
example for PHP. If you want to go ahead and write your own argument processing routine, use the sargv array
containing the arguments and the $argc variable indicating the number of arguments. $argv[0] is the program
name, and $argv[1] to $argv[$argc-1] are the following arguments. The following code illustrates how to
access these variables:

print ('Number of arguments: $argc\n');
print ("'Program name: $argv[O0]\n'");
print (CArguments following program name:\n‘");
if ($argc == 1)
print ("'None\n');
else

for ($i = 1; $i < $argc; $i++)
print ("$i: $argv[$i]\n");

2.11.4.3 Python

Python passes command arguments to scripts as a list in the sys.argv variable. You can access this variable by
importing the sys module, then process its contents with getopt() if you also import the getopt module. The
following program illustrates how to get parameters from the command arguments and use them for establishing a
connection to the server:

#1 /usr/bin/python
cmdline.py - demonstrate command-line option parsing in Python

import sys
import getopt
import MySQLdb

try:
opts, args = getopt.getopt (sys.argv[l:],
“"hzpzu:™
["host=", "password=", "user="])
except getopt.error, e:
print program name and text of error message
print "%s: %s' % (sys-argv[0], e)
sys.exit (1)

default connection parameter values
host_name = password = user_name = "'

1terate through options, extracting whatever values are present
for opt, arg in opts:
if opt in ("-h", "--host'):
host_name = arg
elif opt in (-p*", "--password™):
password = arg
elif opt in ('-u", "--user'™):
user_name = arg

try:
conn = MySQLdb.connect (db = *cookbook™,
host = host _name,
user = user_name,
passwd = password)

print "Connected"

except MySQLdb.Error, e:
print ""Cannot connect to server"
print "Error:', e.args[1]
print "Code:", e.args[0]
sys.exit (1)

conn.close ()
print ""Disconnected"
sys.exit (0)

getopt() takes either two or three arguments:

e Alist of command arguments. This should not include the program name, sys.argv[0]. You can use
sys.argv[1:] to refer to the list of arguments that follow the program name.

e A string naming the short option letters. Any of these may be followed by a colon character (:) to indicate
that the option requires a following argument that specifies the option's value.

« An optional list of long option names. Each name may be followed by = to indicate that the option requires
a following argument.

getopt() returns two values. The first is a list of option/value pairs, and the second is a list of any remaining
arguments following the last option. cmdline.py iterates through the option list to determine which options are
present and what their values are. Note that although you do not specify leading dashes in the option names passed
to getopt(), the names returned from that function do include leading dashes.

cmdline.py doesn't prompt for a missing password, because the getopt() module doesn't provide any way to
specify that an option's argument is optional. Unfortunately, this means the -p and --password arguments cannot be
specified without a password value.

2.11.4.4 Java

Java passes command-line arguments to programs in the array that you name in the main() declaration. The
following declaration uses args for that array:

public static void main (String[] args)

A Getopt class for parsing arguments in Java is available at
http://www.urbanophile.com/arenn/coding/download.html Install this class somewhere and make sure its
installation directory is named in the value of your CLASSPATH environment variable. Then you can use Getopt as
shown in the following example program:

// Cmdline.java - demonstrate command-line option parsing in Java

import java.io.™;
import java.sql.*;
import gnu.getopt.*; // need this for the Getopt class

public class Cmdline

{
public static void main (String[] args)

{

Connection conn = null;
String url = null;

String hostName = null;
String password = null;
String userName = null;

boolean promptForPassword = false;
LongOpt[] longOpt = new LongOpt[3];
int c;

longOpt[0] =

new LongOpt (*'host', LongOpt.REQUIRED_ARGUMENT, null, "h®);
longOpt[1] =

new LongOpt ('password™, LongOpt.OPTIONAL_ARGUMENT, null, “p®);
longOpt[2] =

new LongOpt (“'user’™, LongOpt.REQUIRED ARGUMENT, null, “u®);

// instantiate option-processing object, then
// loop until there are no more options
Getopt g = new Getopt ('Cmdline', args, "h:p::u:", longOpt);
while ((c = g-getopt ()) = -1)
{
switch (c)
{
case "h-":
hostName = g.getOptarg ();
break;

p-:
// if password option was given with no following

case

// value, need to prompt for the password
password = g.getOptarg ();
if (password == null)

promptForPassword = true;

break;
case "u":

userName = g.getOptarg ();

break;
case ":I": // a required argument Is missing
case "?": // some other error occurred

// no error message needed; getopt() prints its own
System.exit (1);

}
}
if (password == null && promptForPassword)
{
try
{
DatalnputStream s = new DatalnputStream (System.in);
System.err.print (“Enter password: ');
// really should turn off character echoing here...
password = s.readLine ();
catch (Exception e)
{
System.err.println ("Error reading password™);
System.exit (1);
}
}
try
{
// construct URL, noting whether or not hostName
// was given; if not, MySQL will assume localhost
if (hostName == null)
hostName = """';
url = "jdbc:mysql://" + hostName + "'/cookbook';
Class.forName ('com.mysql.jdbc.Driver'™)_newlnstance ();
conn = DriverManager.getConnection (url, userName, password);
System.out.println (""Connected");
}
catch (Exception e)
{
System.err._println (*'Cannot connect to server');
}
finally
{
if (conn I= null)
{
try
{
conn.close ();
System.out.println (*'Disconnected™);
catch (Exception e) { }
}

As the example program demonstrates, you prepare to parse arguments by instantiating a new Getopt object to
which you pass the program's arguments and information describing the options the program allows. Then you call
getopt() ina loop until it returns -1 to indicate that no more options are present. Each time through the loop,
getopt() returns a value indicating which option it's seen, and getOptarg() may be called to obtain the
option's argument, if necessary. (getOptarg() returns nul I if no following argument was provided.)

When you create an instance of the Getopt() class, pass it either three or four arguments:

e The program name; this is used for error messages.

e The argument array named in your main() declaration.

e Astring listing the short option letters (without leading dashes). Any of these may be followed by a colon
(:) to indicate that the option requires a following argument, or by a double colon (: :) to indicate that a
following argument is optional.

e An optional array that contains long option information. To specify long options, you must set up an array
of LongOpt objects. Each of these describes a single option, using four parameters:

o The option name as a string (without leading dashes).

o A value indicating whether the option takes a following argument. This value may be
LongOpt.NO_ARGUMENT, LongOpt.REQUIRED_ARGUMENT, Or LongOpt.OPTIONAL_ARGUMENT.

o A stringBuffer object or null. getopt() determines how to use this value based on the fourth
parameter of the LongOpt object.

o A value to be used when the option is encountered. This value becomes the return value of getopt(
) if the StringBuffer object named in the third parameter is nul 1. If the buffer is non-nul I,
getopt() returns zero after placing a string representation of the fourth parameter into the buffer.

The example program uses nul 1 as the StringBuffer parameter for each long option object and the
corresponding short option letter as the fourth parameter. This is an easy way to cause getopt() to return the
short option letter for both the short and long options, so that you can handle them with the same case statement.

After getopt() returns -1 to indicate that no more options were found in the argument array, getOptind()
returns the index of the first argument following the last option. The following code fragment shows one way to
access the remaining arguments:

for (int i1 = g.getOptind (); 1 < args.length; i++)
System.out.println (args[i]);

The Getopt class offers other option-processing behavior in addition to what I've described here. Read the
documentation included with the class for more information.

One deficiency of Cmdline.java that you may want to address is that it doesn't disable character echoing while it's
reading the password.

2.11.5 Getting Parameters from Option Files

If your API allows it, you can specify connection parameters in a MySQL option file and the API will read the
parameters from the file for you. For APIs that do not support option files directly, you may be able to arrange to
read other types of files in which parameters are stored, or to write your own functions that read option files.

The format of option files was described in Chapter 1. I'll assume that you've read the discussion there and
concentrate here on how to use option files from within programs. Under Unix, user-specific options are specified
by convention in ~/.my.cnf (that is, in the .my.cnf file in your home directory). However, the MySQL option file
mechanism can look in several different files. The standard search order is /etc/my.cnf, the my.cnf file in the
server's default data directory, and the ~/.my.cnf file for the current user. Under Windows, the search order is the
my.ini file in the Windows system directory, C:\my.cnf, and the my.cnf file in the server's default data directory. If
multiple option files exist and a parameter is specified in several of them, the last value found takes precedence.
However, it's not an error for any given option file not to exist.

MySQL option files will not be used by your own programs unless you tell them to do so. Perl and Python provide
direct API support for reading option files; simply indicate that you want to use them at the time that you connect
to the server. It's possible to specify that only a particular file should be read, or that the standard search order
should be used to look for multiple option files. PHP and Java do not support option files. As a workaround for
PHP, we'll write a simple option file parsing function. For Java, we'll adopt a different approach that uses
properties files.

Although the conventional name under Unix for the user-specific option file is .my.cnf in the current user's home
directory, there's no rule your programs must use this particular file. You can name an option file anything you like
and put it wherever you want. For example, you might set up a file /usr/local/apache/lib/cb.cnf for use by web
scripts that access the cookbook database. Under some circumstances, you may even want to create multiple files.
Then, from within any given script, you can select the file that's appropriate for the type of permissions the script
needs. For example, you might have one option file, cb.cnf, that lists parameters for a full-access MySQL account,
and another file, cb-ro.cnf, that lists connection parameters for an account that needs only read-only access to
MySQL. Another possibility is to list multiple groups within the same option file and have your scripts select
options from the appropriate group.

Sidebar 12. C API Support for Option Files

The Perl and Python APIs are built using the C API, and option file support was not added to the C
client library until MySQL 3.22.10. This means that even for Perl and Python, you must have MySQL
3.22.10 or later to use option files from within your own programs.

Historically, the database name has not been a parameter you get from an option file. (Programs
typically provide this value themselves or expect the user to specify it.) As of MySQL 3.23.6, support
was added to the C client library to look for option file lines of the form database=db_name, but the
examples in this section do not use this fact.

2.11.5.1 Perl

Perl DBI scripts can use option files if you have DBD::mysqgl 1.21.06 or later. To take advantage of this, place the
appropriate option specifiers in the third component of the data source name string:

e To specify an option group, use mysql_read_default_group=groupname. This tells MySQL to search the
standard option files for options in the named group and in the [client] group. The groupname value
should be written without the square brackets that are part of the line that begins the group. For example, if
a group in an option file begins with a [my_prog] line, specify my_prog as the groupname value. To search
the standard files but look only in the [client] group, groupname should be client.

e To name a specific option file, use mysql_read_default_file=Filename in the DSN. When you do this,
MySQL looks only in that file, and only for options in the [client] group.

o If you specify both an option file and an option group, MySQL reads only the named file, but looks for
options both in the named group and in the [client] group.

The following example tells MySQL to use the standard option file search order to look for options in both the
[cookbook] and [client] groups:

basic DSN
my $dsn = "DBI:mysql :database=cookbook";
look iIn standard option files; use [cookbook] and [client] groups
$dsn .= ";mysql_read_default_group=cookbook";
my $dbh = DBI->connect ($dsn, undef, undef,
{ PrintError => 0, RaiseError => 1 });

The next example explicitly names the option file located in $SENV{HOME}, the home directory of the user running
the script. Thus, MySQL will look only in that file and will use options from the [client] group:

basic DSN
my $dsn = "DBI:mysql :database=cookbook";
look iIn user-specific option file owned by the current user
$dsn .= "";mysql_read default Ffile=$ENV{HOME}/ .my.cnf";
my $dbh = DBI->connect ($dsn, undef, undef,
{ PrintError => 0, RaiseError => 1 });

If you pass an empty value (undef or the empty string) for the username or password arguments of the connect(

) call, connect() uses whatever values are found in the option file or files. A nonempty username or password in
the connect() call overrides any option file value. Similarly, a host named in the DSN overrides any option file
value. You can use this behavior to allow DBI scripts to obtain connection parameters both from option files as
well as from the command line as follows:

1. Create $host_name, $user_name, and $password variables and initialize them to undef. Then parse the
command-line arguments to set the variables to non-undef values if the corresponding options are present
on the command line. (See the Perl script earlier in this section to see how this is done.)

2. After parsing the command arguments, construct the DSN string and call connect(). Use
mysqgl_read_default_group and mysql_read_default_file in the DSN to specify how you want option
files to be used, and, if $host_name is not undef, add host=$host_name to the DSN. In addition, pass
$user_name and $password as the username and password arguments to connect(). These will be undef
by default; if they were set from the command-line arguments, they will have non-undef values that
override any option file values.

If a script follows this procedure, parameters given by the user on the command line are passed to connect() and
take precedence over the contents of option files.

2.11.5.2 PHP

PHP has no native support for using MySQL option files, at least at the moment. To work around that limitation,
use a function that reads an option file, such as the read_mysqgl_option_file() function shown below. It takes
as arguments the name of an option file and an option group name or an array containing group names. (Group
names should be named without square brackets.) Then it reads any options present in the file for the named group
or groups. If no option group argument is given, the function looks by default in the [client] group. The return
value is an array of option name/value pairs, or FALSE if an error occurs. It is not an error for the file not to exist.

function read_mysql_option_file ($filename, $group_list = “client")
{
if (is_string ($group_list)) # convert string to array
$group_list = array ($group_list);
iT (Nis_array ($group_list)) # hmm ... garbage argument?
return (FALSE);
$opt = array (); # option name/value array
if (1($fp = fopen ($filename, '"r'"))) # 1Tt Tile does not exist,
return ($opt); # return an empty list
$in_named_group = 0; # set non-zero while processing a named group
while ($s = fgets ($fp, 1024))
{
$s = trim ($s);
it (ereg ("M[#:1", $s)) # skip comments
continue;
it Cereg C"\[LU™1H]1", $s, $arg)) # option group line?
{

check whether we"re in one of the desired groups
$in_named group = 0;

reset ($group list);

while (list ($key, $group_name) = each ($group_list))

if ($arg[1l] == $group_name)
{

$in_named_group = 1; # we are
break;
}
>
continue;
it (I$in_named_group) # we"re not in a desired
continue; # group, skip the line
it (ereg (""([" \t=19)[\t]*=[\t]*(.™)", $s, $arg))
$opt[$arg[l]] = $arg[2]; # name=value
else if (ereg (' (™ \t]+)", $s, %arg))
$Sopt[Sarg[1]] = ; # name only

else line is malformed

3
return ($opt);

Here are a couple of examples showing how to use read_mysql_option_file(). The first reads a user's option
file to get the [client] group parameters, then uses them to connect to the server. The second reads the system-
wide option file and prints the server startup parameters that are found there (that is, the parameters in the
[mysqld] and [server] groups):

$opt = read_mysql_option_Ffile (""/u/paul/.my.cnf");
$link = @mysql_connect ($opt["host™], $opt["user'], $opt["password"]);

$opt = read mysql _option_Ffile (""/etc/my.cnf", array ("mysqld", ''server™));
while (list ($name, $value) = each ($opt))
print (""$name => $value\n™);

If you're using the MySQL_Access interface that was developed in Recipe 2.10, you might think about how to
extend the class by implementing a derived class that gets the username, password, and hostname from an option
file. You could also give this derived class the ability to search multiple files, which is an aspect of the usual option
file behavior that read_mysql_option_file() does not provide.

2.11.5.3 Python

The MySQLdb module for DB-API provides direct support for using MySQL option files. Specify an option file or
option group using read_default_file or read_default_group arguments to the connect() method. These
two arguments act the same way as the mysql_read_default_file and mysql_read_default_group options for
the Perl DBI connect() method (see the Perl discussion earlier in this section). To use the standard option file
search order to look for options in both the [cookbook] and [client] groups, do something like this:

try:
conn = MySQLdb.connect (db = *cookbook'™, read default group = '‘cookbook'™)
print "Connected"
except:
print "Cannot connect to server"™
sys.exit (1)

The following example shows how to use the .my.cnf file in the current user's home directory to obtain parameters
from the [client]group:®

8 'y ou must import the OS module to access OS - environ.

try:
option_file = os.environ["HOME™] + /" + "_my.cnf"
conn = MySQLdb.connect (db = *cookbook™, read _default file = option_file)
print ""Connected”
except:
print "Cannot connect to server"™
sys.exit (1)

2.11.5.4 Java

The MySQL Connector/J JDBC driver doesn't support option files. However, the Java class library provides
support for reading properties files that contain lines in name=value format. This is somewhat similar to MySQL

option file format, although there are some differences (for example, properties files do not allow [groupname]
lines). Here is a simple properties file:

this file lists parameters for connecting to the MySQL server
user=cbuser

password=cbpass

host=l1ocalhost

The following program, ReadPropsFile.java, shows one way to read a properties file named Cookbook.properties
to obtain connection parameters. The file must be in a directory named in your CLASSPATH variable, or else you
must specify it using a full pathname (the example shown here assumes the file is in a CLASSPATH directory):

import java.sql.*;
import java.util.*; // need this for properties file support

public class ReadPropsFile
{
public static void main (String[] args)
{
Connection conn = null;
String url = null;
String propsFile
Properties props

""Cookbook.properties™;
new Properties ();

try
{

props.load (ReadPropsFile.class.getResourceAsStream (propsFile));

catch (Exception e)

{ System.err._println ('Cannot read properties file"™);
System.exit (1);

}

try

{

// construct connection URL, encoding username
// and password as parameters at the end
url = "jdbc:mysql://"

+ props.getProperty (“'host')

+ '/cookbook™

+ ""?user="" + props.getProperty (‘'user™)

+ "&password="" + props.getProperty (‘‘password’™);
Class.forName ('com.mysqgl.jdbc.Driver'™)._newlnstance ();
conn = DriverManager.getConnection (url);

System.out.printin ('Connected™);

catch (Exception e)

{
System.err.println (“'Cannot connect to server');
by
finally
{
try
{

if (conn = null)

{

conn.close ();
System.out.println ('Disconnected™);

}

catch (SQLException e) { /* ignore close errors */ }

If you want getProperty() to return a particular default value when the named property is not found, pass that
value as a second argument. For example, to use localhost as the default host value, call getProperty() like
this:

String hostName = props.getProperty (‘“'host', "localhost™);

The Cookbook.class library file developed earlier in the chapter (Recipe 2.4) includes a propsConnect() routine
that is based on the concepts discussed here. To use it, set up the contents of the properties file,
Cookbook.properties, and copy the file to the same location where you installed Cookbook.class. Then you can
establish a connection within a program by importing the Cookbook class and calling Cookbook . propsConnect()
rather than by calling Cookbook . connect().

2.12 Conclusion and Words of Advice

This chapter discusses the basic operations provided by each of our APIs for handling various aspects of
interacting with the MySQL server. These operations allow you to write programs that issue any kind of query and
retrieve the results. Up to this point, we've used simple queries because the focus is on the APIs rather than on
SQL. The next chapter focuses on SQL instead, to show how to ask the database server more complex questions.

Before you proceed, it would be a good idea to reset the profi le table used in this chapter to a known state.
Several queries in later chapters use this table; by reinitializing it, you'll get the same results displayed in those
chapters when you run the queries shown there. To reset the table, change location into the tables directory of the
recipes distribution and run the following commands:

% mysql cookbook < profile.sql
% mysql cookbook < profile2.sql

Section 3.1.

Chapter 3. Record Selection Techniques

Introduction

Section 3.2.

Specifying Which Columns to Display

Section 3.3. Avoiding Output Column Order Problems When Writing Programs
Section 3.4. Giving Names to Output Columns

Section 3.5. Using Column Aliases to Make Programs Easier to Write

Section 3.6. Combining Columns to Construct Composite Values

Section 3.7. Specifying Which Rows to Select

Section 3.8. WHERE Clauses and Column Aliases

Section 3.9. Displaying Comparisons to Find Out How Something Works
Section 3.10. Reversing or Negating Query Conditions

Section 3.11. Removing Duplicate Rows

Section 3.12. Working with NULL Values

Section 3.13. Negating a Condition on a Column That Contains NULL Values
Section 3.14. Writing Comparisons Involving NULL in Programs

Section 3.15. Mapping NULL Values to Other Values for Display

Section 3.16. Sorting a Result Set

Section 3.17. Selecting Records from the Beginning or End of a Result Set
Section 3.18. Pulling a Section from the Middle of a Result Set

Section 3.19. Choosing Appropriate LIMIT Values

Section 3.20. Calculating LIMIT Values from Expressions

Section 3.21. What to Do When LIMIT Requires the "Wrong" Sort Order
Section 3.22. Selecting a Result Set into an Existing Table

Section 3.23.

Creating a Destination Table on the Fly from a Result Set

Section 3.24.

Moving Records Between Tables Safely

Section 3.25.

Creating Temporary Tables

Section 3.26.

Cloning a Table Exactly

Section 3.27.

Generating Unigue Table Names

3.1 Introduction

This chapter focuses on the SELECT statement that is used for retrieving information from a database. It provides
some essential background that shows various ways you can use SELECT to tell MySQL what you want to see. You
should find the chapter helpful if your SQL background is limited or if you want to find out about the MySQL-
specific extensions to SELECT syntax. However, there are so many ways to write SELECT queries that we'll
necessarily touch on just a few. You may wish to consult the MySQL Reference Manual or a MySQL text for more
information about the syntax of SELECT, as well as the functions and operators that you can use for extracting and
manipulating data.

SELECT gives you control over several aspects of record retrieval:

e Which table to use

e Which columns to display from the table
e What names to give the columns

e Which rows to retrieve from the table

e How to sort the rows

Many useful queries are quite simple and don't specify all those things. For example, some forms of SELECT don't
even name a table—a fact used in Recipe 1.32, which discusses how to use mysqgl as a calculator. Other non-table-
based queries are useful for purposes such as checking what version of the server you're running or the name of the
current database:

mysql> SELECT VERSION(), DATABASE();

e e +
| VERSION() | DATABASE() |
e TS RS- +
| 3-23.51-1og | cookbook |
Fom e — Fom e — +

However, to answer more involved questions, normally you'll need to pull information from one or more tables.
Many of the examples in this chapter use a table named mai I, which contains columns used to maintain a log of
mail message traffic between users on a set of hosts. Its definition looks like this:

CREATE TABLE mail

(
t DATETIME, # when message was sent
srcuser CHAR(8), # sender (source user and host)
srchost CHAR(20),
dstuser CHAR(8), # recipient (destination user and host)
dsthost CHAR(20),
size BIGINT, # message size in bytes
INDEX (%)
):

And its contents look like this:

e o —— o —— o o o —— +
| t | srcuser | srchost | dstuser | dsthost | size |

vy R Fommmmem R Fommmmem Fommmmem +
2001-05-11 10:15:08	barb	saturn	tricia	mars	58274
2001-05-12 12:48:13	tricia	mars	gene	venus	194925
2001-05-12 15:02:49	phil	mars	phil	saturn	1048
2001-05-13 13:59:18	barb	saturn	tricia	venus	271
2001-05-14 09:31:37	gene	venus	barb	mars	2291
2001-05-14 11:52:17	phil	mars	tricia	saturn	5781
2001-05-14 14:42:21	barb	venus	barb	venus	98151
2001-05-14 17:03:01	tricia	saturn	phil	venus	2394482
2001-05-15 07:17:48	gene	mars	gene	saturn	3824
2001-05-15 08:50:57	phil	venus	phil	venus	978
2001-05-15 10:25:52	gene	mars	tricia	saturn	998532
2001-05-15 17:35:31	gene	saturn	gene	mars	3856
2001-05-16 09:00:28	gene	venus	barb	mars	613
2001-05-16 23:04:19	phil	venus	barb	venus	10294
2001-05-17 12:49:23	phil	mars	tricia	saturn	873
2001-05-19 22:21:51	gene	saturn	gene	venus	23992
Ry Fom e Fom T T S +

To create the mai I table and load its contents, change location into the tables directory of the recipes distribution
and run this command:

% mysql cookbook < mail.sqgl

This chapter also uses other tables from time to time. Some of these were used in previous chapters, while others
are new. For any that you need to create, do so the same way as for the mai I table, using scripts in the tables
directory. In addition, the text for many of the scripts and programs used in the chapter may be found in the select
directory. You can use the files there to try out the examples more easily.

Many of the queries shown here can be tried out with mysql, which you can read about in Chapter 1. Some of the

examples issue queries from within the context of a programming language. See Chapter 2 for background on
programming techniques.

3.2 Specifying Which Columns to Display

3.2.1 Problem

You want to display some or all of the columns from a table.

3.2.2 Solution

Use * as a shortcut that selects all columns. Or name the columns you want to see explicitly.

3.2.3 Discussion

To indicate what kind of information you want to see from a table, name a column or a list of columns and the

table to use. The easiest way to select output columns is to use the * specifier, which is a shortcut for naming all
the columns in a table:

mysql> SELECT * FROM mail;

Ry Fom e — o — o — o — o — +
| t | srcuser | srchost | dstuser | dsthost | size |
Ry Fom e o T o o +
2001-05-11 10:15:08	barb	saturn	tricia	mars	58274
2001-05-12 12:48:13	tricia	mars	gene	venus	194925
2001-05-12 15:02:49	phil	mars	phil	saturn	1048
2001-05-13 13:59:18	barb	saturn	tricia	venus	271

Alternatively, you can list the columns explicitly:

mysql> SELECT t, srcuser, srchost, dstuser, dsthost, size FROM mail;

S Fomm T - T - T ST +
| t | srcuser | srchost | dstuser | dsthost | size |
Sy R R R R Fommmme o +
2001-05-11 10:15:08	barb	saturn	tricia	mars	58274
2001-05-12 12:48:13	tricia	mars	gene	venus	194925
2001-05-12 15:02:49	phil	mars	phil	saturn	1048
2001-05-13 13:59:18	barb	saturn	tricia	venus	271

It's certainly easier to use * than to write out a list of column names. However, with *, there is no guarantee about
the order in which columns will be returned. (The server returns them in the order they are listed in the table
definition, but this may change if you change the definition. See Chapter 8.) Thus, one advantage of naming the
columns explicitly is that you can place them in whatever order you want. Suppose you want hostnames to appear
before usernames, rather than after. To accomplish this, name the columns as follows:

mysql> SELECT t, srchost, srcuser, dsthost, dstuser, size FROM mail;

S Fomm T - T - T ST +
| t | srchost | srcuser | dsthost | dstuser | size |
Ry Fom e — o — o — o — o — +
2001-05-11 10:15:08	saturn	barb	mars	tricia	58274
2001-05-12 12:48:13	mars	tricia	venus	gene	194925
2001-05-12 15:02:49	mars	phil	saturn	phil	1048
2001-05-13 13:59:18	saturn	barb	venus	tricia	271

Another advantage of naming the columns compared to using * is that you can name just those columns you want
to see and omit those in which you have no interest:

mysqgl> SELECT size FROM mail;

Fom e +
| size |
o +
| 58274 |
| 194925 |
| 1048 |
| 271 |

mysql> SELECT t, srcuser, srchost, size FROM mail;
Ry Fom e — Fom e — o — - +

| t | srcuser | srchost | size |
R Fom e — Fom e — o — +
2001-05-11 10:15:08	barb	saturn	58274
2001-05-12 12:48:13	tricia	mars	194925
2001-05-12 15:02:49	phil	mars	1048

| barb | saturn | 271 |

| 2001-05-13 13:59:18

3.3 Avoiding Output Column Order Problems When Writing
Programs

3.3.1 Problem
You're issuing a SELECT * query from within a program, and the columns don't come back in the order you expect.
3.3.2 Solution

When you use * to select columns, all bets are off; you can't assume anything about the order in which they'll be
returned. Either name the columns explicitly in the order you want, or retrieve them into a data structure that
makes their order irrelevant.

3.3.3 Discussion

The examples in the previous section illustrate the differences between using * versus a list of names to specify
output columns when issuing SELECT statements from within the mysql program. The difference between
approaches also may be significant when issuing queries through an API from within your own programs,
depending on how you fetch result set rows. If you select output columns using *, the server returns them using the
order in which they are listed in the table definition—an order that may change if the table structure is modified. If
you fetch rows into an array, this non-determinacy of output column order makes it impossible to know which
column each array element corresponds to. By naming output columns explicitly, you can fetch rows into an array
with confidence that the columns will appear in the array in the same order that you named them in the query.

On the other hand, your API may allow you to fetch rows into a structure containing elements that are accessed by
name. (For example, in Perl you can use a hash; in PHP you can use an associative array or an object.) If you do
this, you can issue a SELECT * query and then access structure members by referring to the column names in any
order you want. In this case, there is effectively no difference between selecting columns with * or by naming them
explicitly: If you can access values by name within your program, their order within result set rows is irrelevant.
This fact makes it tempting to take the easy way out by using SELECT * for all your queries, even if you're not
actually going to use every column. Nevertheless, it's more efficient to name specifically only the columns you
want so that the server doesn't send you information you're just going to ignore. (An example that explains in more
detail why you may want to avoid retrieving certain columns is given in Recipe 9.9, in Recipe 9.9.10.")

3.4 Giving Names to Output Columns

3.4.1 Problem

You don't like the names of the columns in your query result.

3.4.2 Solution

Supply names of your own choosing using column aliases.

3.4.3 Discussion

Whenever you retrieve a result set, MySQL gives every output column a name. (That's how the mysgl program
gets the names that you see displayed as the initial row of column headers in result set output.) MySQL assigns
default names to output columns, but if the defaults are not suitable, you can use column aliases to specify your

own names.

This section explains aliases and shows how to use them to assign column names in queries. If you're writing a
program that needs to retrieve information about column names, see Recipe 9.3.

If an output column in a result set comes directly from a table, MySQL uses the table column name for the result
set column name. For example, the following statement selects three table columns, the names of which become
the corresponding output column names:

mysql> SELECT t, srcuser, size FROM mail;

Ry P Fom e +
| t | srcuser | size |
e o T +
2001-05-11 10:15:08	barb	58274
2001-05-12 12:48:13	tricia	194925
2001-05-12 15:02:49	phil	1048

| barb | 271 |

| 2001-05-13 13:59:18

If you generate a column by evaluating an expression, the expression itself is the column name. This can produce
rather long and unwieldy names in result sets, as illustrated by the following query that uses an expression to
reformat the t column of the mail table:

mysql> SELECT
-> CONCAT(MONTHNAME(t), " =,DAYOFMONTH(t),", ",YEAR(L)),
-> srcuser, size FROM mail;

ey S o +
| CONCAT(MONTHNAME(t)," *,DAYOFMONTH(t),", ",YEAR(t)) | srcuser | size I
A S +

| vay 11, 2001
| vay 12, 2001
| May 12, 2001
| May 13, 2001

barb | 58274 |
tricia | 194925 |
phil | 1048 |
barb | 271 |

The preceding example uses a query that is specifically contrived to illustrate how awful-looking column names
can be. The reason it's contrived is that you probably wouldn't really write the query that way—the same result can
be produced more easily using MySQL's DATE_FORMAT() function. But even with DATE_FORMAT(), the column
header is still ugly:

mysql> SELECT

-> DATE_FORMAT(t, %M %e, %Y"),

-> srcuser, size FROM mail;
Ry Fom e P +

| DATE_FORMAT(t, %M %e, %Y™)

o l ————————— o +
May 11, 2001	barb	58274
May 12, 2001	tricia	194925
May 12, 2001	phil I 1048	
May 13, 2001	barb I 271	

To give a result set column a name of your own choosing, use AS name to specify a column alias. The following
query retrieves the same result as the previous one, but renames the first column to date_sent:

mysql> SELECT
-> DATE_FORMAT(t, "%M %e, %Y") AS date_sent,
-> srcuser, size FROM mail;

o Fom e — Fom e — +
| date_sent | srcuser | size |
T Fomm Fommm +
May 11, 2001	barb	58274
May 12, 2001	tricia	194925
May 12, 2001	phil	1048
May 13, 2001	barb	271

You can see that the alias makes the column name more concise, easier to read, and more meaningful. If you want
to use a descriptive phrase, an alias can consist of several words. (Aliases can be fairly arbitrary, although they are
subject to a few restrictions such as that they must be quoted if they are SQL keywords, contain spaces or other
special characters, or are entirely numeric.) The following query retrieves the same data values as the preceding
one but uses phrases to name the output columns:

mysql> SELECT
-> DATE_FORMAT(t, "%M %e, %Y") AS "Date of message-®,
-> srcuser AS "Message sender®, size AS "Number of bytes®™ FROM mail;

o o o +
| Date of message | Message sender | Number of bytes |
e e Ry +
May 11, 2001	barb	58274
vay 12, 2001	tricia	194925
May 12, 2001	phil	1048
May 13, 2001	barb	271

Aliases can be applied to any result set column, not just those that come from tables:

mysgl> SELECT "1+1+1" AS "The expression®, 1+1+1 AS "The result”;

o o +
| The expression | The result |
e Fom +
| 1+1+1 | 3]
Sy R —— +

Here, the value of the first column is "1+1+1" (quoted so that it is treated as a string), and the value of the second
column is 1+1+1 (without quotes so that MySQL treats it as an expression and evaluates it). The aliases are
descriptive phrases that help to make clear the relationship between the two column values.

If you try using a single-word alias and MySQL complains about it, the alias probably is a reserved word. Quoting
it should make it legal:

mysqgl> SELECT 1 AS INTEGER;
You have an error in your SQL syntax near "INTEGER" at line 1
mysql> SELECT 1 AS "INTEGER";

o +
| INTEGER |
o +
| 1]
o +

3.5 Using Column Aliases to Make Programs Easier to Write
3.5.1 Problem

You're trying to refer to a column by name from within a program, but the column is calculated from an
expression. Consequently, it's difficult to use.

3.5.2 Solution
Use an alias to give the column a simpler name.
3.5.3 Discussion

If you're writing a program that fetches rows into an array and accesses them by numeric column indexes, the
presence or absence of column aliases makes no difference, because aliases don't change the positions of columns
within the result set. However, aliases make a big difference if you're accessing output columns by name, because
aliases change those names. You can exploit this fact to give your program easier names to work with. For
example, if your query displays reformatted message time values from the mai I table using the expression
DATE_FORMAT (t, "%M %e, %Y™), that expression is also the name you'd have to use when referring to the output
column. That's not very convenient. If you use AS date_sent to give the column an alias, you can refer to it a lot
more easily using the name date_sent. Here's an example that shows how a Perl DBI script might process such
values:

$sth = $dbh->prepare (
"SELECT srcuser,

DATE_FORMAT(t, "%M %e, %Y") AS date_sent
FROM mail™);

$sth->execute ();

while (my $ref = $sth->Fetchrow_hashref ())

{

printf "user: %s, date sent: %s\n', $ref->{srcuser}, $ref->{date sent};

In Java, you'd do something like this:

Statement s = conn.createStatement ();

s.executeQuery ('SELECT srcuser,”
+ " DATE_FORMAT(L, "%M %e, %Y") AS date_sent™
+ " FROM mail™);

ResultSet rs = s.getResultSet ();

while (rs.next ()) // loop through rows of result set

{

String name = rs.getString ('srcuser');
String dateSent = rs.getString (‘'date_sent');
System.out.println ('user: " + name

+ ', date sent: " + dateSent);

rs.close ();
s.close ();

In PHP, retrieve result set rows using mysql_fetch_array() or mysql_fetch_object() to fetch rows into a
data structure that contains named elements. With Python, use a cursor class that causes rows to be returned as
dictionaries containing key/value pairs where the keys are the column names. (See Recipe 2.5.)

3.6 Combining Columns to Construct Composite Values

3.6.1 Problem

You want to display values that are constructed from multiple table columns.

3.6.2 Solution

One way to do this is to use CONCAT(). You might also want to give the column a nicer name by using an alias.
3.6.3 Discussion

Column values may be combined to produce composite output values. For example, this expression concatenates
srcuser and srchost values into email address format:

CONCAT(srcuser,"@" ,srchost)

Such expressions tend to produce ugly column names, which is yet another reason why column aliases are useful.
The following query uses the aliases sender and recipient to name output columns that are constructed by
combining usernames and hostnames into email addresses:

mysql> SELECT
-> DATE_FORMAT(t, "%M %e, %Y") AS date_sent,
-> CONCAT(srcuser, "@",srchost) AS sender,
-> CONCAT(dstuser, "@" ,dsthost) AS recipient,
-> size FROM mail;

+
I |
+ +
| May 11, 2001 | barb@saturn tricia@mars | 58274
I |
I |
I |

|
| May 12, 2001 | tricia@mars gene@venus 194925 |
| May 12, 2001 phil@mars phil@saturn 1048 |
| May 13, 2001 barb@saturn tricia@venus 271 |

3.7 Specifying Which Rows to Select

3.7.1 Problem

You don't want to see all the rows from a table, just some of them.

3.7.2 Solution

Add a WHERE clause to the query that indicates to the server which rows to return.

3.7.3 Discussion

Unless you qualify or restrict a SELECT query in some way, it retrieves every row in your table, which may be a lot
more information than you really want to see. To be more precise about the rows to select, provide a WHERE clause
that specifies one or more conditions that rows must match.

Conditions can perform tests for equality, inequality, or relative ordering. For some column types such as strings,

you can use pattern matches. The following queries select columns from rows containing srchost values that are
exactly equal to the string “venus™®, that are lexically less than the string “pluto*, or that begin with the letter =s*:

mysql> SELECT t, srcuser, srchost FROM mail WHERE srchost = “venus”;

S Fomm T - +
| t srcuser | srchost |
Sy Fommmmmeem Fommmme o +
2001-05-14 09:31:37	gene	venus
2001-05-14 14:42:21	barb	venus
2001-05-15 08:50:57	phil	venus
2001-05-16 09:00:28	gene	venus
2001-05-16 23:04:19	phil	venus
Ry Fom e — o — +
mysql> SELECT t, srcuser, srchost FROM mail WHERE srchost < "pluto”;
S Fomm T - +

| t | srcuser | srchost |

vy R T +
2001-05-12 12:48:13	tricia	mars
2001-05-12 15:02:49	phil	mars
2001-05-14 11:52:17	phil	mars
2001-05-15 07:17:48	gene	mars
2001-05-15 10:25:52	gene	mars
2001-05-17 12:49:23	phil	mars
Ry Fom e Fom e +		
mysql> SELECT t, srcuser, srchost FROM mail WHERE srchost LIKE "s%";		
S TR TR +		
t	srcuser	srchost
Ry Fom e — o — +		
2001-05-11 10:15:08	barb	saturn
2001-05-13 13:59:18	barb	saturn
2001-05-14 17:03:01	tricia	saturn
2001-05-15 17:35:31	gene	saturn
2001-05-19 22:21:51	gene	saturn
Ry Fom e Fom e +

WHERE clauses can test multiple conditions. The following statement looks for rows where the srcuser column has
any of three different values. (It asks the question, "When did gene, barb, or phil send mail?"):

mysqgl> SELECT t, srcuser, dstuser FROM mail
-> WHERE srcuser = "gene” OR srcuser = “barb® OR srcuser = "phil~;
Foe Fom e ——_—— Fom e —_——_—— +

| t | srcuser | dstuser |

2001-05-11 10:15:08	barb	tricia
2001-05-12 15:02:49	phil	phil
2001-05-13 13:59:18	barb	tricia
2001-05-14 09:31:37	gene	barb

Queries such as the preceding one that test a given column to see if it has any of several different values often can
be written more easily by using the IN() operator. IN() is true if the column is equal to any value in its
argument list:

mysql> SELECT t, srcuser, dstuser FROM mail
-> WHERE srcuser IN ("gene®,"barb®, "phil®);

e o o +
| t | srcuser | dstuser |
Ry Fom e — o — +
2001-05-11 10:15:08	barb	tricia
2001-05-12 15:02:49	phil	phil
2001-05-13 13:59:18	barb	tricia
2001-05-14 09:31:37	gene	barb

Different conditions can test different columns. This query finds messages sent by barb to tricia:

mysqgl> SELECT * FROM mail WHERE srcuser = "barb®" AND dstuser = "tricia”;
e o o T T T —— +

| t | srcuser | srchost | dstuser | dsthost | size |

ey o o o . o +

| 2001-05-11 10:15:08 | barb | saturn | tricia | mars | 58274 |
| 2001-05-13 13:59:18 | barb | saturn | tricia | venus | 271 |
Ry Fom e Fom e T o o +

Comparisons need only be legal syntactically; they need not make any sense semantically. The comparison in the
following query doesn't have a particularly obvious meaning, but MySQL will happily execute it:»

M 1f you try issuing the query to see what it returns, how do you account for the result?

SELECT * FROM mail WHERE srcuser + dsthost < size

Sidebar 1. Are Queries That Return No
Rows Failed Queries?

If you issue a SELECT statement and get no rows back, has the query failed? It depends. If the lack of a
result set is due to a problem such as that the statement is syntactically invalid or refers to nonexisting
tables or columns, the query did indeed fail, because it could not even be executed. In this case, some
sort of error condition should occur and you should investigate why your program is attempting to
issue a malformed statement.

If the query executes without error but returns nothing, it simply means that the query's WHERE clause
matched no rows:

mysqgl> SELECT * FROM mail WHERE srcuser = "no-such-user”®;
Empty set (0.01 sec)

This is not a failed query. It ran successfully and produced a result; the result just happens to be empty
because no rows have a srcuser value of no-such-user.

Columns need not be compared to literal values. You can test a column against other columns. Suppose you have a
cd table lying around that contains year, artist, and title columns:2

21t's not unlikely you'll have such a table if you've been reading other database books. Many of these have you go through the exercise of creating a database to keep track of your CD
collection, a scenario that seems to rank second in popularity only to parts-and-suppliers examples.

mysql> SELECT year, artist, title FROM cd;

T T - S +
| year | artist | title |
T — o o +
1990	lona	Tona
1992	Charlie Peacock	Lie Down in the Grass
1993	lona	Beyond These Shores
1987	The 77s	The 77s
1990	Michael Gettel	Return
1989	Richard Souther	Cross Currents
1996	Charlie Peacock	strangelanguage

| 1982 | Undercover | Undercover |

If so, you can find all your eponymous CDs (those with artist and title the same) by performing a comparison of
one column within the table to another:

mysql> SELECT year, artist, title FROM cd WHERE artist = title;

o —— o o +
| year | artist | title |
o —— o o — +
1990	lona	Tona
1987	The 77s	The 77s
1982	Undercover	Undercover
o o o +

A special case of within-table column comparison occurs when you want to compare a column to itself rather than
to a different column. Suppose you collect stamps and list your collection in a stamp table that contains columns
for each stamp’s ID number and the year it was issued. If you know that a particular stamp has an ID number 42
and want to use the value in its year column to find the other stamps in your collection that were issued in the
same year, you'd do so by using year-to-year comparison—in effect, comparing the year column to itself:

mysql> SELECT stamp.* FROM stamp, stamp AS stamp2
-> WHERE stamp.year = stamp2.year AND stamp2.id = 42 AND stamp.id != 42;

| 97 | 1987 | 1-cent transition stamp |
| 161 | 1987 | aviation stamp |
[T o —_— e +

This kind of query involves a self-join, table aliases, and column references that are qualified using the table name.
But that's more than | want to go into here. Those topics are covered in Chapter 12.

3.8 WHERE Clauses and Column Aliases
3.8.1 Problem

You want to refer to a column alias in a WHERE clause.

3.8.2 Solution

Sorry, you cannot.

3.8.3 Discussion

You cannot refer to column aliases in a WHERE clause. Thus, the following query is illegal:

mysqgl> SELECT t, srcuser, dstuser, size/1024 AS Kkilobytes

-> FROM mail WHERE Kilobytes > 500;
ERROR 1054 at line 1: Unknown column “kilobytes®™ in “where clause”

The error occurs because aliases name output columns, whereas a WHERE clause operates on input columns to
determine which rows to select for output. To make the query legal, replace the alias in the WHERE clause with the
column or expression that the alias represents:

mysql> SELECT t, srcuser, dstuser, size/1024 AS kilobytes
-> FROM mail WHERE size/1024 > 500;

R Fommmm— Fom - o +
| t | srcuser | dstuser | kilobytes |
Ry Fom e — Fom e — o — +
| 2001-05-14 17:03:01 | tricia | phil | 2338.36 |
| 2001-05-15 10:25:52 | gene | tricia | 975.13 |
S Fommmm— Fom - o +

3.9 Displaying Comparisons to Find Out How Something Works
3.9.1 Problem

You're curious about how a comparison in a WHERE clause works. Or perhaps about why it doesn't seem to be
working.

3.9.2 Solution

Display the result of the comparison to get more information about it. This is a useful diagnostic or debugging
technique.

3.9.3 Discussion

Normally you put comparison operations in the WHERE clause of a query and use them to determine which records
to display:

mysqgl> SELECT * FROM mail WHERE srcuser < "c®" AND size > 5000;

Ry o o — o — o — o ——_—— +
| t | srcuser | srchost | dstuser | dsthost | size |
S Fomm - T - T - T Fommm e +
| 2001-05-11 10:15:08 | barb | saturn | tricia | mars | 58274 |
| 2001-05-14 14:42:21 | barb | venus | barb | venus | 98151 |
Ry o o — o — o — o ——_—— +

But sometimes it's desirable to see the result of the comparison itself (for example, if you're not sure that the
comparison is working the way you expect it to). To do this, just put the comparison expression in the output
column list, perhaps including the values that you're comparing as well:

mysqgl> SELECT srcuser, srcuser < "c", size, size > 5000 FROM mail;
Fom——_—— — o Fo——_—— e —— +

| srcuser | srcuser < "c" | size | size > 5000 |

o o o o +
| barb I 1] 58274 | 1]
| tricia | 0| 194925 | 1]
| phil I 0 | 1048 | 0 |

I 1] 271 | 0 |

| barb

This technique of displaying comparison results is particularly useful for writing queries that check how a test
works without using a table:

mysql> SELECT "a" = "A";
e +
| "a” = A" |
o +
| 1]
o +

This query result tells you that string comparisons are not by default case sensitive, which is a useful thing to
know.

3.10 Reversing or Negating Query Conditions

3.10.1 Problem

You know how to write a query to answer a given question; now you want to ask the opposite question.
3.10.2 Solution

Reverse the conditions in the WHERE clause by using negation operators.

3.10.3 Discussion

The WHERE conditions in a query can be negated to ask the opposite questions. The following query determines
when users sent mail to themselves:

mysqgl> SELECT * FROM mail WHERE srcuser = dstuser;

Ry Fom e Fom e T o o +
| t | srcuser | srchost | dstuser | dsthost | size |
Sy . o R Fomm Fomm +
2001-05-12 15:02:49	phil	mars	phil	saturn	1048
2001-05-14 14:42:21	barb	venus	barb	venus	98151
2001-05-15 07:17:48	gene	mars	gene	saturn	3824
2001-05-15 08:50:57	phil	venus	phil	venus	978
2001-05-15 17:35:31	gene	saturn	gene	mars	3856
2001-05-19 22:21:51	gene	saturn	gene	venus	23992
Ry Fom e Fom e T o o +

To reverse this query, to find records where users sent mail to someone other than themselves, change the
comparison operator from = (equal to) to 1= (not equal to):

mysqgl> SELECT * FROM mail WHERE srcuser != dstuser;

Ry Fom e — o — o — o — o — +
| t | srcuser | srchost | dstuser | dsthost | size |
Ry Fom e Fom e T o T +
2001-05-11 10:15:08	barb	saturn	tricia	mars	58274
2001-05-12 12:48:13	tricia	mars	gene	venus	194925
2001-05-13 13:59:18	barb	saturn	tricia	venus	271
2001-05-14 09:31:37	gene	venus	barb	mars	2291

mysql> SELECT * FROM mail WHERE srcuser = dstuser AND srchost = dsthost;
S Fomm TR Fomm - T - TR +
| t | srcuser | srchost | dstuser | dsthost | size |
o R Fommmmmm Fommmmem R S—— +
| 2001-05-14 14:42:21 | barb | venus | barb | venus | 98151 |
| 2001-05-15 08:50:57 | phil | venus | phil | venus | 978 |
S Fomm TR Fomm - T - TR +

Reversing the conditions for this query involves not only changing the = operators to =, but changing the AND to
OR:

mysql> SELECT * FROM mail WHERE srcuser != dstuser OR srchost != dsthost;

Ry Fom e Fom e T o T +
| t | srcuser | srchost | dstuser | dsthost | size |
o R Fommmmmm Fommmmem R Fommmmem +
2001-05-11 10:15:08	barb	saturn	tricia	mars	58274
2001-05-12 12:48:13	tricia	mars	gene	venus	194925
2001-05-12 15:02:49	phil	mars	phil	saturn	1048
2001-05-13 13:59:18	barb	saturn	tricia	venus	271

You may find it easier just to put the entire original expression in parentheses and negate the whole thing with NOT:

mysql> SELECT * FROM mail WHERE NOT (srcuser = dstuser AND srchost = dsthost);

S Fomm TR Fomm - T - TR +
| t | srcuser | srchost | dstuser | dsthost | size |
Ry Fom e — o — o — o — o — +
2001-05-11 10:15:08	barb	saturn	tricia	mars	58274
2001-05-12 12:48:13	tricia	mars	gene	venus	194925
2001-05-12 15:02:49	phil	mars	phil	saturn	1048
2001-05-13 13:59:18	barb	saturn	tricia	venus	271

3.10.4 See Also

If a column involved in a condition may contain NULL values, reversing the condition is a little trickier. See Recipe
3.13 for details.

3.11 Removing Duplicate Rows

3.11.1 Problem

Output from a query contains duplicate records. You want to eliminate them.
3.11.2 Solution

Use DISTINCT.

3.11.3 Discussion

Some queries produce results containing duplicate records. For example, to see who sent mail, you could query the
mail table like this:

mysqgl> SELECT srcuser FROM mail;
| srcuser |

+
| barb |
| tricia |
| phil |
| barb |
| gene |
| phil |
| barb |
| tricia |
| gene |
| phil |
| gene |
| gene |
| gene |
| phil |
| phil |
| gene |

But that result is heavily redundant. Adding DISTINCT to the query removes the duplicate records, producing a set
of unique values:

mysqgl> SELECT DISTINCT srcuser FROM mail;
| srcuser |
+
| barb |
| tricia |
| phil |
| gene |

DISTINCT works with multiple-column output, too. The following query shows which dates are represented in the
mai I table:

mysql> SELECT DISTINCT YEAR(t), MONTH(t), DAYOFMONTH(t) FROM mail;

o o . +
| YEARCL) | MONTH(t) | DAYOFMONTH(L) |
o o e +
I 2001 | 5] 11 |
I 2001 | 5] 12 |
I 2001 | 5 | 13 |
I 2001 | 5 | 14 |
I 2001 | 5 | 15 |
I 2001 | 5 | 16 |
I 2001 | 5] 17 |
I 2001 | 5 | 19 |
o o o +

To count the number of unique values, do this:

mysqgl> SELECT COUNT(DISTINCT srcuser) FROM mail;

Ry +
| COUNT(DISTINCT srcuser) |
Ry +
I 4
e +

COUNT(DISTINCT) requires MySQL 3.23.2 or higher.
3.11.4 See Also

DISTINCT is revisited in Chapter 7. Duplicate removal is discussed in more detail in Chapter 14.

3.12 Working with NULL Values

3.12.1 Problem

You're trying to compare column values to NULL, but it isn't working.

3.12.2 Solution

You have to use the proper comparison operators: 1S NULL, 1S NOT NULL, Or <=>,

3.12.3 Discussion

Conditions involving NULL are special. You cannot use = NULL or = NULL to look for NULL values in columns.

Such comparisons always fail because it's impossible to tell whether or not they are true. Even NULL = NULL fails.
(Why? Because you can't determine whether one unknown value is the same as another unknown value.)

To look for columns that are or are not NULL, use 1S NULL or 1S NOT NULL. Suppose a table taxpayer contains
taxpayer names and ID numbers, where a NULL ID indicates that the value is unknown:

mysqgl> SELECT * FROM taxpayer;

Fommmemmem S T — +
| name | id |
Fom e — Fom—— - +
| bernina | 198-48 |
| bertha NULL |
| ben NULL |

|
|

| bill | 475-83 |
+

You can see that = and '= do not work with NULL values as follows:

mysql> SELECT * FROM taxpayer WHERE id = NULL;
Empty set (0.00 sec)

mysql> SELECT * FROM taxpayer WHERE id != NULL;
Empty set (0.01 sec)

To find records where the id column is or is not NULL, the queries should be written like this:

mysql> SELECT * FROM taxpayer WHERE id IS NULL;

Fom—— Fo— +
| name | id |

e R +

| bertha | NULL |

| ben | NULL |

Fom—— Fo— +

mysql> SELECT * FROM taxpayer WHERE id 1S NOT NULL;
T e +

| name | id |

e e +

| bernina | 198-48 |

| bill | 475-83 |

T e +

As of MySQL 3.23, you can also use <=> to compare values, which (unlike the = operator) is true even for two
NULL values:

mysqgl> SELECT NULL = NULL, NULL <=> NULL;

e e +
| NULL = NULL | NULL <=> NULL |
S o +
| NULL | 1]
e e +

3.12.4 See Also

NULL values also behave specially with respect to sorting and summary operations. See Recipe 6.6 and Recipe 7.9.

3.13 Negating a Condition on a Column That Contains NULL
Values

3.13.1 Problem

You're trying to negate a condition that involves NULL, but it's not working.

3.13.2 Solution

NULL is special in negations, just like it is otherwise. Perhaps even more so.

3.13.3 Discussion

Recipe 3.10 pointed out that you can reverse query conditions, either by changing comparison operators and

Boolean operators, or by using NOT. These techniques may not work if a column can contain NULL. Recall that the
taxpayer table from Recipe 3.12 looks like this:

bernina	198-48
bertha	NULL
ben	NULL
bill	475-83
Fom e — Fom—— - +

Now suppose you have a query that finds records with taxpayer ID values that are lexically less than 200-00:

mysqgl> SELECT * FROM taxpayer WHERE id < "200-00";

o o +
| name | id |
Fomm Fom +
| bernina | 198-48 |
. S +

Reversing this condition by using >= rather than < may not give you the results you want. It depends on what
information you want to obtain. If you want to select only records with non-NULL ID values, >= is indeed the
proper test:

mysqgl> SELECT * FROM taxpayer WHERE id >= "200-00";
o ——_ o +
| name | id |
S Fomm - +
| bill | 475-83 |
o o +

But if you want all the records not selected by the original query, simply reversing the operator will not work. NULL
values fail comparisons both with < and with >=, so you must add an additional clause specifically for them:

mysqgl> SELECT * FROM taxpayer WHERE id >= "200-00" OR id IS NULL;

S T — S T — +
| name | id |
o ——_— Fom—— - +
bertha	NULL
ben	NULL
bill	475-83
T — T — +

3.14 Writing Comparisons Involving NULL in Programs
3.14.1 Problem

You're writing a program that issues a query, but it fails for NULL values.

3.14.2 Solution

Try writing the comparison selectively for NULL and non-NULL values.

3.14.3 Discussion

The need to use different comparison operators for NULL values than for non-NULL values leads to a subtle danger
when constructing query strings within programs. If you have a value stored in a variable that might represent a
NULL value, you must account for that if you use the value in comparisons. For example, in Perl, undef represents
a NULL value, so to construct a statement that finds records in the taxpayer table matching some arbitrary value in
an $id variable, you cannot do this:

$sth = $dbh->prepare ('SELECT * FROM taxpayer WHERE id = ?');
$sth->execute ($id);

The statement fails when $id is undef, because the resulting query becomes:

SELECT * FROM taxpayer WHERE id = NULL

That statement returns no records—a comparison of = NULL always fails. To take into account the possibility that
$id may be undef, construct the query using the appropriate comparison operator like this:

$operator = (defined ($id) ? "=" : "IS");

$sth = $dbh->prepare (“'SELECT * FROM taxpayer WHERE id $operator ?');
$sth->execute ($id);

This results in queries as follows for $id values of undef (NULL) or 43 (not NULL):

SELECT * FROM taxpayer WHERE id 1S NULL
SELECT * FROM taxpayer WHERE i1d = 43

For inequality tests, set $operator like this instead:

$operator = (defined ($id) ? "I=" : "IS NOT");

3.15 Mapping NULL Values to Other Values for Display
3.15.1 Problem

A query's output includes NULL values, but you'd rather see something more meaningful, like "Unknown."
3.15.2 Solution

Convert NULL values selectively to another value when displaying them. You can also use this technique to catch
divide-by-zero errors.

3.15.3 Discussion

Sometimes it's useful to display NULL values using some other distinctive value that has more meaning in the
context of your application. If NULL id values in the taxpayer table mean "unknown," you can display that label
by using IF() to map them onto the string Unknown:

mysqgl> SELECT name, IF(id IS NULL, "Unknown®, id) AS "id" FROM taxpayer;

| name | id |
TR TR +
| bernina | 198-48 |
| bertha Unknown |
| ben Unknown |

I

|
: |

| bill | 475-83
+

Actually, this technique works for any kind of value, but it's especially useful with NULL values because they tend
to be given a variety of meanings: unknown, missing, not yet determined, out of range, and so forth.

The query can be written more concisely using I1FNULL(), which tests its first argument and returns it if it's not
NULL, or returns its second argument otherwise:

mysql> SELECT name, IFNULL(id,"Unknown®) AS "id" FROM taxpayer;

bernina	198-48
bertha	Unknown
ben	Unknown

| bill | 475-83 |
o o +

In other words, these two tests are equivalent:

IF(exprl 1S NOT NULL,exprl,expr2)
IFNULL(exprl,expr2)

From a readability standpoint, 1F() often is easier to understand than 1FNULL(). From a computational
perspective, IFNULL() is more efficient because expri never need be evaluated twice, as sometimes happens
with 1F().

IF() and IFNULL() are especially useful for catching divide-by-zero operations and mapping them onto
something else. For example, batting averages for baseball players are calculated as the ratio of hits to at-bats. But
if a player has no at-bats, the ratio is undefined:

mysgl> SET @hits = 0, @atbats = O;
mysqgl> SELECT @hits, @atbats, @hits/@atbats AS "batting average®;

. o e +
| @hits | @atbats | batting average |
Fom—— Fom e —_——_—— Fo +
| 0 | 0 | NULL |
. o e +

To handle that case by displaying zero, do this:

mysgl> SET @hits = 0, @atbats = O;

mysql> SELECT @hits, @atbats, IFNULL(@hits/@atbats,0) AS "batting average-;
o —_—— Fom e — o +

| @hits | @atbats | batting average |

Earned run average calculations for a pitcher with no innings pitched can be treated the same way. Other common
uses for this idiom are as follows:

IFNULL(expr, "Missing~®)
IFNULL(expr, "N/A™)
IFNULL(expr, "Unknown™)

3.16 Sorting a Result Set
3.16.1 Problem

Your query results aren't sorted the way you want.

3.16.2 Solution

MySQL can't read your mind. Add an ORDER BY clause to tell it exactly how you want things sorted.

3.16.3 Discussion

When you select rows, the MySQL server is free to return them in any order, unless you instruct it otherwise by

saying how to sort the result. There are lots of ways to use sorting techniques. Chapter 6 explores this topic further.
Briefly, you sort a result set by adding an ORDER BY clause that names the column or columns you want to sort by:

mysqgl> SELECT * FROM mail WHERE size > 100000 ORDER BY size;
Ry Fom e — Fom e — o — o o — +
| t | srcuser | srchost | dstuser | dsthost | size |
S Fomm T - Fom - T - TR +
2001-05-12 12:48:13	tricia	mars	gene	venus	194925
2001-05-15 10:25:52	gene	mars	tricia	saturn	998532
2001-05-14 17:03:01	tricia	saturn	phil	venus	2394482
Ry Fom e Fom e T o T +
mysqgl> SELECT * FROM mail WHERE dstuser = "tricia“

-> ORDER BY srchost, srcuser;
0y R Fommmmem R Fommmmem S ST +
| t | srcuser | srchost | dstuser | dsthost | size |
Ry Fom e Fom T o o +
2001-05-15 10:25:52	gene	mars	tricia	saturn	998532
2001-05-14 11:52:17	phil	mars	tricia	saturn	5781
2001-05-17 12:49:23	phil	mars	tricia	saturn	873
2001-05-11 10:15:08	barb	saturn	tricia	mars	58274
2001-05-13 13:59:18	barb	saturn	tricia	venus	271
T Fomm T - Fomm - T - T —— +

To sort a column in reverse (descending) order, add the keyword DESC after its name in the ORDER BY clause:

mysqgl> SELECT * FROM mail WHERE size > 50000 ORDER BY size DESC;

Ry Fom e o T o o +
| t | srcuser | srchost | dstuser | dsthost | size |
T Fommm TR T - TR TS +
2001-05-14 17:03:01	tricia	saturn	phil	venus	2394482
2001-05-15 10:25:52	gene	mars	tricia	saturn	998532
2001-05-12 12:48:13	tricia	mars	gene	venus	194925
2001-05-14 14:42:21	barb	venus	barb	venus	98151
2001-05-11 10:15:08	barb	saturn	tricia	mars	58274
Sy R R R R Fommmme o +

3.17 Selecting Records from the Beginning or End of a Result
Set

3.17.1 Problem

You want to see only certain rows from a result set, like the first one or the last five.

3.17.2 Solution
Use a LIMIT clause, perhaps in conjunction with an ORDER BY clause.
3.17.3 Discussion

MySQL supports a LIMIT clause that tells the server to return only part of a result set. LIMIT is a MySQL-specific
extension to SQL that is extremely valuable when your result set contains more rows than you want to see at a
time. It allows you to retrieve just the first part of a result set or an arbitrary section of the set. Typically, LIMIT is
used for the following kinds of problems:

e Answering questions about first or last, largest or smallest, newest or oldest, least or more expensive, and
so forth.

o Splitting a result set into sections so that you can process it one piece at a time. This technique is common
in web applications for displaying a large search result across several pages. Showing the result in sections
allows display of smaller pages that are easier to understand.

The following examples use the profile table that was introduced in Chapter 2. Its contents look like this:

mysql> SELECT * FROM profile;

T TR - Fomm——— o Fom——— +
| id | name | birth | color | foods | cats |
TR S o o —_—— Ry E T —— +
| 1| Fred | 1970-04-13 | black | lutefisk,fadge,pizza | 0|
| 2 | Mort | 1969-09-30 | white | burrito,curry,eggroll | 31
| 3 | Brit | 1957-12-01 | red | burrito,curry,pizza | 1]
| 4] Carl | 1973-11-02 | red | eggroll,pizza | 4 |
|l 5| Sean | 1963-07-04 | blue | burrito,curry | 5]
| 6 | Alan | 1965-02-14 | red | curry,fadge | 1]
| 7 | Mara | 1968-09-17 | green | lutefisk, fadge | 1]
|l 8 | Shepard | 1975-09-02 | black | curry,pizza | 2]
| 9 | Dick | 1952-08-20 | green | lutefisk,fadge | 0|
| 10 | Tony | 1960-05-01 | white | burrito,pizza | 0 |
TR S Fom o Ny B T —— +

To select the first n records of a query result, add LIMIT n to the end of your SELECT statement:

mysql> SELECT * FROM profile LIMIT 1;

Fom et — - o o ——_—— Ry E +
| id | name | birth | color | foods | cats |

Fom e o o Ry B —— +

|l 1 | Fred | 1970-04-13 | black | lutefisk,fadge,pizza | O |

TR - TR - S — o S E— +

mysql> SELECT * FROM profile LIMIT 5;

Fom et — - o oo —_—— Ry E +
| id | name | birth | color | foods | cats |
T TR - Fomm——— S Fom——— +
| 1 | Fred | 1970-04-13 | black | lutefisk,fadge,pizza | 0 |
| 2 | Mort | 1969-09-30 | white | burrito,curry,eggroll | 31
| 3| Brit | 1957-12-01 | red | burrito,curry,pizza | 1]
| 4 | Carl | 1973-11-02 | red | eggroll,pizza | 4 |
|l 5| Sean | 1963-07-04 | blue | burrito,curry | 5]
TR - TR - S — o S E—- +

However, because the rows in these query results aren't sorted into any particular order, they may not be very
meaningful. A more common technique is to use ORDER BY to sort the result set. Then you can use LIMIT to find
smallest and largest values. For example, to find the row with the minimum (earliest) birth date, sort by the birth
column, then add LIMIT 1 to retrieve the first row:

mysqgl> SELECT * FROM profile ORDER BY birth LIMIT 1;

Fom e o Fom o B T —— +
| id | name | birth | color | foods | cats |
ot o T o B — +
| 9 | Dick | 1952-08-20 | green | lutefisk,fadge | O |
Fom et — - o o ——_—— o E T —— +

This works because MySQL processes the ORDER BY clause to sort the rows first, then applies LIMIT. To find the
row with the most recent birth date, the query is similar, except that you sort in descending order:

mysqgl> SELECT * FROM profile ORDER BY birth DESC LIMIT 1;

TR o Fom o B T —— +
| id | name | birth | color | foods | cats |
RS S Fom———— S Fom——— +
| 8 | Shepard | 1975-09-02 | black | curry,pizza | 2]
TR S o o ——_—— o E T —— +

You can obtain the same information by running these queries without LIMIT and ignoring everything but the first
row. The advantage of using LIMIT is that the server returns just the first record and the extra rows don't travel
over the network at all. This is much more efficient than retrieving an entire result set, only to discard all but one

row,

The sort column or columns can be whatever you like. To find the row for the person with the most cats, sort by
the cats column:

mysqgl> SELECT * FROM profile ORDER BY cats DESC LIMIT 1;

Fom et — - o o ——_—— o E T —— +
| id | name | birth | color | foods | cats |
T TR - Fom——— S Fom——— +
|l 5| Sean | 1963-07-04 | blue | burrito,curry | 5]
TR - TR - N S —— Fo o S E—- +

However, be aware that using LIMIT n to select the "n smallest” or "n largest™ values may not yield quite the
results you expect. See Recipe 3.19 for some discussion on framing LIMIT queries appropriately.

To find the earliest birthday within the calendar year, sort by the month and day of the bi rth values:

mysqgl> SELECT name, DATE_FORMAT(birth, *%m-%d") AS birthday
-> FROM profile ORDER BY birthday LIMIT 1;

R — e +

| name | birthday |

R — T +

| Alan | 02-14 |
o —— o +

Note that LIMIT n really means "return at most n rows." If you specify LIMIT 10 and the result set has only 3 rows,
the server returns 3 rows.

3.17.4 See Also
You can use LIMIT in combination with RAND() to make random selections from a set of items. See Chapter 13.

As of MySQL 3.22.7, you can use LIMIT to restrict the effect of a DELETE statement to a subset of the rows that
would otherwise be deleted. As of MySQL 3.23.3, the same is true for UPDATE. This can be useful in conjunction
with a WHERE clause. For example, if a table contains five instances of a record, you can select them in a DELETE
statement with an appropriate WHERE clause, then remove the duplicates by adding LIMIT 4 to the end of the
statement. This leaves only one copy of the record. For more information about uses of LIMIT in duplicate record
removal, see Chapter 14.

3.18 Pulling a Section from the Middle of a Result Set
3.18.1 Problem

You don't want the first or last rows of a result set. Instead, you want to pull a section of rows out of the middle of
the set, such as rows 21 through 40.

3.18.2 Solution

That's still a job for LiMIT. But you need to tell it the starting position within the result set in addition to the
number of rows you want.

3.18.3 Discussion

LIMIT n tells the server to return the first n rows of a result set. LIMIT also has a two-argument form that allows
you to pick out any arbitrary section of rows from a result. The arguments indicate how many rows to skip and
how many to return. This means that you can use LIMIT to do such things as skip two rows and return the next,
thus answering questions such as "what is the third-smallest or third-largest value?," something that's more
difficult with MINC) or MAX():

mysqgl> SELECT * FROM profile ORDER BY birth LIMIT 2,1;

Fom et — - o o ——_—— o E T —— +
| id | name | birth | color | foods | cats |

T TR - Fom——— S Fom——— +

| 10 | Tony | 1960-05-01 | white | burrito,pizza | (O |

R - TR - S —— Fo o S E— +

mysql> SELECT * FROM profile ORDER BY birth DESC LIMIT 2,1;
Fom e o Fom gy B — +
| id | name | birth | color | foods | cats |
TR - TR - N S —— o S E— +

The two-argument form of LIMIT also makes it possible to partition a result set into smaller sections. For example,
to retrieve 20 rows at a time from a result, issue the same SELECT statement repeatedly, but vary the LIMIT clauses
like so:

SELECT ... FROM ... ORDER BY ... LIMIT 0, 20; retrieve first 20 rows

SELECT ... FROM ... ORDER BY ... LIMIT 20, 20; skip 20 rows, retrieve next 20
SELECT ... FROM ... ORDER BY ... LIMIT 40, 20; skip 40 rows, retrieve next 20
etc.

Web developers often use LIMIT this way to split a large search result into smaller, more manageable pieces so that
it can be presented over several pages. We'll discuss this technique further in Recipe 18.11.

If you want to know how large a result set is so that you can determine how many sections there are, you can issue
a COUNT() query first. Use a WHERE clause that is the same as for the queries you'll use to retrieve the rows. For
example, if you want to display profile table records in name order four at a time, you can find out how many
there are with the following query:

mysql> SELECT COUNT(*) FROM profile;

o +
| COUNT(®) |
o +
| 10 |
Fom e +

That tells you you'll have three sets of rows (although the last one will have fewer than four records), which you
can retrieve as follows:

SELECT * FROM profile ORDER BY name LIMIT O, 4;
SELECT * FROM profile ORDER BY name LIMIT 4, 4;
SELECT * FROM profile ORDER BY name LIMIT 8, 4;

Beginning with MySQL 4.0, you can fetch a part of a result set, but also find out how big the result would have
been without the LIMIT clause. For example, to fetch the first four records from the profi le table and then obtain
the size of the full result, run these queries:

SELECT SQL_CALC_FOUND_ROWS * FROM profile ORDER BY name LIMIT 4;
SELECT FOUND_ROWS();

The keyword sQL_CALC_FOUND_ROWS in the first query tells MySQL to calculate the size of the entire result set
even though the query requests that only part of it be returned. The row count is available by calling FOUND_ROWS(
). If that function returns a value greater than four, there are other records yet to be retrieved.

3.19 Choosing Appropriate LIMIT Values
3.19.1 Problem

LIMIT doesn't seem to do what you want it to.

3.19.2 Solution

Be sure you understand what question you're asking. It may be that LIMIT is exposing some interesting subtleties
in your data that you have not considered or are not aware of.

3.19.3 Discussion

LIMIT n is useful in conjunction with ORDER BY for selecting smallest or largest values from a result set. But does
that actually give you the rows with the n smallest or largest values? Not necessarily! It does if your rows contain
unique values, but not if there are duplicates. You may find it necessary to run a preliminary query first to help you
choose the proper LIMIT value.

To see why this is, consider the following dataset, which shows the American League pitchers who won 15 or
more games during the 2001 baseball season:

mysql> SELECT name, wins FROM al_winner
-> ORDER BY wins DESC, name;

I

+
Mulder, Mark	
Clemens, Roger	
Moyer, Jamie	
Garcia, Freddy	
Hudson, Tim	
Abbott, Paul	
Mays, Joe	
Mussina, Mike	17
Sabathia, C.C.	
Zito, Barry	
Buehrle, Mark	
Milton, Eric	
Pettitte, Andy	
Radke, Brad	
Sele, Aaron	

+

If you want to know who won the most games, adding LIMIT 1 to the preceding query will give you the correct
answer, because the maximum value is 21 and there is only one pitcher with that value (Mark Mulder). But what if
you want the four highest game winners? The proper queries depend on what you mean by that, which can have
various interpretations:

o If you just want the first four rows, sort the records and add LIMIT 4:
° mysqgl> SELECT name, wins FROM al_winner

-> ORDER BY wins DESC, name

-> LIMIT 4;
Sy S S +
| name | wins |
T ST +
| Mulder, Mark | 21 |

| Clemens, Roger | 20 |
| Moyer, Jamie | 20 |

| Garcia, Freddy | 18 |
e Fom——_—— +

That may not suit your purposes because LIMIT imposes a cutoff that occurs in the middle of a set of
pitchers with the same number of wins (Tim Hudson also won 18 games).

To avoid making a cutoff in the middle of a set of rows with the same value, select rows with values greater
than or equal to the value in the fourth row. Find out what that value is with LIMIT, then use it in the WHERE
clause of a second query to select rows:
mysql> SELECT wins FROM al_winner
-> ORDER BY wins DESC, name
-> LIMIT 3, 1;

B — +
| wins |
B —— +
I 18]
E +

mysqgl> SELECT name, wins FROM al_winner
-> WHERE wins >= 18
-> ORDER BY wins DESC, name;

T B T —— +
| name | wins |
T B T —— +

Mulder, Mark	21
Clemens, Roger	20
Moyer, Jamie	20
Garcia, Freddy	18
Hudson, Tim	18

If you want to know all the pitchers with the four largest wins values, another approach is needed.
Determine the fourth-largest value with DISTINCT and LIMIT, then use it to select rows:
mysqgl> SELECT DISTINCT wins FROM al_winner
-> ORDER BY wins DESC, name
-> LIMIT 3, 1;

S S +
| wins |
Fom——— +

mysgl> SELECT name, wins FROM al_winner
-> WHERE wins >= 17
-> ORDER BY wins DESC, name;

|

+
| Mulder, Mark |
| Clemens, Roger |
| Moyer, Jamie |
| Garcia, Freddy | 18
| Hudson, Tim |
| Abbott, Paul |
| Mays, Joe |
| Mussina, Mike |
| Sabathia, C.C. |
| Zito, Barry |

For this dataset, each method yields a different result. The moral is that the way you use LIMIT may require some
thought about what you really want to know.

3.20 Calculating LIMIT Values from Expressions
3.20.1 Problem

You want to use expressions to specify the arguments for LIMIT.

3.20.2 Solution

Sadly, you cannot. You can use only literal integers—unless you issue the query from within a program, in which
case you can evaluate the expressions yourself and stick the resulting values into the query string.

3.20.3 Discussion

Arguments to LIMIT must be literal integers, not expressions. Statements such as the following are illegal:

SELECT * FROM profile LIMIT 5+5;
SELECT * FROM profile LIMIT @skip_count, @show_count;

The same "no expressions allowed" principle applies if you're using an expression to calculate a LIMIT value in a
program that constructs a query string. You must evaluate the expression first, then place the resulting value in the
query. For example, if you produce a query string in Perl (or PHP) as follows, an error will result when you
attempt to execute the query:

$str = "SELECT * FROM profile LIMIT $x + $y';

To avoid the problem, evaluate the expression first:

$z = $x + By;
$str = "SELECT * FROM profile LIMIT $z";

Or do this (but don't omit the parentheses or the expression won't evaluate properly):

$str = "SELECT * FROM profile LIMIT " . ($x + $y);

If you're constructing a two-argument LIMIT clause, evaluate both expressions before placing them into the query
string.

3.21 What to Do When LIMIT Requires the "Wrong" Sort Order
3.21.1 Problem

LiImMIT usually works best in conjunction with an ORDER BY clause that sorts rows. But sometimes the sort order is
the opposite of what you want for the final result.

3.21.2 Solution

Rewrite the query, or write a program that retrieves the rows and sorts them into the order you want.

3.21.3 Discussion

If you want the last four records of a result set, you can obtain them easily by sorting the set in reverse order and

using LIMIT 4. For example, the following query returns the names and birth dates for the four people in the
profile table who were born most recently:

mysqgl> SELECT name, birth FROM profile ORDER BY birth DESC LIMIT 4;

Fom e Fom +
| name | birth |
o o +
Shepard	1975-09-02
Carl	1973-11-02
Fred	1970-04-13
Mort	1969-09-30
o o +

But that requires sorting the birth values in descending order to place them at the head of the result set. What if
you want them in ascending order instead? One way to solve this problem is to use two queries. First, use COUNT(
) to find out how many rows are in the table:

mysqgl> SELECT COUNT(*) FROM profile;

Then, sort the values in ascending order and use the two-argument form of LIMIT to skip all but the last four
records:

mysqgl> SELECT name, birth FROM profile ORDER BY birth LIMIT 6, 4;

o o +
| name | birth |
Fom e —_——_—— Fom e +
Mort	1969-09-30
Fred	1970-04-13
Carl	1973-11-02
Shepard	1975-09-02
Fom e —_——_—— Fom e +

Single-query solutions to this problem may be available if you're issuing queries from within a program and can
manipulate the query result. For example, if you fetch the values into a data structure, you can reverse the order of
the values in the structure. Here is some Perl code that demonstrates this approach:

my $stmt = ""SELECT name, birth FROM profile ORDER BY birth DESC LIMIT 4";
fetch values into a data structure

my $ref = $dbh->selectall_arrayref ($stmt);

reverse the order of the items in the structure

my @val = reverse (@{$ref});

use $val[$i] to get a reference to row $i, then use

$val[$i]->[0] and $val[$i]->[1] to access column values

Alternatively, you can simply iterate through the structure in reverse order:

my $stmt = ""SELECT name, birth FROM profile ORDER BY birth DESC LIMIT 4";
fetch values into a data structure

my $ref = $dbh->selectall_arrayref ($stmt);

iterate through the structure in reverse order

my $row_count = @{$ref};

for (my $i = $row_count - 1; $i >= 0; $i--)

use $ref->[$i]->[0] and $ref->[$i]->[1] here...
}

3.22 Selecting a Result Set into an Existing Table
3.22.1 Problem

You want to run a SELECT query but save the results into another table rather than displaying them.

3.22.2 Solution

If the other table exists, use INSERT INTO ... SELECT, described here. If the table doesn't exist, skip ahead to Recipe
3.23.

3.22.3 Discussion

The MySQL server normally returns the result of a SELECT statement to the client that issued the statement. For
example, when you run a query from within mysql, the server returns the result to mysql, which in turn displays it
to you on the screen. It's also possible to send the results of a SELECT statement directly into another table. Copying
records from one table to another is useful in a number of ways:

« If you're developing an algorithm that modifies a table, it's safer to work with a copy of a table so that you
need not worry about the consequences of mistakes. Also, if the original table is large, creating a partial
copy can speed the development process because queries run against it will take less time.

« For data-loading operations that work with information that might be malformed, you can load new records
into a temporary table, perform some preliminary checks, and correct the records as necessary. When
you're satisfied the new records are okay, copy them from the temporary table into your main table.

e Some applications maintain a large repository table and a smaller working table into which records are
inserted on a regular basis, copying the working table records to the repository periodically and clearing the
working table.

e If you're performing a number of similar summary operations on a large table, it may be more efficient to
select summary information once into a second table and use that for further analysis, rather than running
expensive summary operations repeatedly on the original table.

This section shows how to use INSERT ... SELECT to retrieve a result set for insertion into an existing table. The
next section discusses CREATE TABLE ... SELECT, a statement available as of MySQL 3.23 that allows you to create
a table on the fly directly from a query result. The table names src_tbl and dst_tbl in the examples refer to the
source table from which rows are selected and the destination table into which they are stored.

If the destination table already exists, use INSERT ... SELECT to copy the result set into it. For example, if dst_tbl
contains an integer column i and a string column s, the following statement copies rows from src_tbl into
dst_tbl, assigning column val to i and column name to s:

INSERT INTO dst_tbl (i, s) SELECT val, name FROM src_tbl;

The number of columns to be inserted must match the number of selected columns, and the correspondence
between sets of columns is established by position rather than name. In the special case that you want to copy all
columns from one table to another, you can shorten the statement to this form:

INSERT INTO dst_tbl SELECT * FROM src_tbl;

To copy only certain rows, add a WHERE clause that selects the rows you want:

INSERT INTO dst_tbl SELECT * FROM src_tbl WHERE val > 100 AND name LIKE “A%";

It's not necessary to copy column values without modification from the source table into the destination table. The
SELECT statement can produce values from expressions, too. For example, the following query counts the number
of times each name occurs in src_tbl and stores both the counts and the names in dst_tbl:

INSERT INTO dst_tbl (i, s) SELECT COUNT(*), name FROM src_tbl GROUP BY name;

i When you use INSERT ... SELECT, you cannot use the same table both as a source and a
an destination.
W L.
A%

3.23 Creating a Destination Table on the Fly from a Result Set
3.23.1 Problem

You want to run a SELECT query and save the result set into another table, but that table doesn't exist yet.

3.23.2 Solution

Create the destination table first, or create it directly from the result of the SELECT.

3.23.3 Discussion

If the destination table does not exist, you can create it first with a CREATE TABLE statement, then copy rows into it
with INSERT ... SELECT as described in Recipe 3.22. This technique works for any version of MySQL.

In MySQL 3.23 and up, a second option is to use CREATE TABLE ... SELECT, which creates the destination table
directly from the result of a SELECT. For example, to create dst_tbl and copy the entire contents of src_tbl into
it, do this:

CREATE TABLE dst_tbl SELECT * FROM src_tbl;

MySQL creates the columns in dst_tbl based on the name, number, and type of the columns in src_tbl. Add an
appropriate WHERE clause, should you wish to copy only certain rows. If you want to create an empty table, use a
WHERE clause that is always false:

CREATE TABLE dst_tbl SELECT * FROM src_tbl WHERE O;

To copy only some of the columns, name the ones you want in the SELECT part of the statement. For example, if
src_tbl contains columns a, b, ¢, and d, you can copy just b and d like this:

CREATE TABLE dst_tbl SELECT b, d FROM src_tbl;

To create columns in a different order than that in which they appear in the source table, just name them in the
desired order. If the source table contains columns a, b, and c, but you want them to appear in the destination table
in the order c, a, and b, do this:

CREATE TABLE dst_tbl SELECT c, a, b FROM src_tbl;

To create additional columns in the destination table besides those selected from the source table, provide
appropriate column definitions in the CREATE TABLE part of the statement. The following statement creates id as an
AUTO_INCREMENT column in dst_tbl, and adds columns a, b, and c from src_tbl:

CREATE TABLE dst_tbl

id INT NOT NULL AUTO_INCREMENT,
PRIMARY KEY (id)

)
SELECT a, b, ¢ FROM src_tbl;

The resulting table contains four columns in the order id, a, b, c. Defined columns are assigned their default
values. (This means that id, being an AUTO_INCREMENT column, will be assigned successive sequence numbers
starting from one. See Recipe 11.2.)

If you derive a column's values from an expression, it's prudent to provide an alias to give the column a name.
Suppose src_tbl contains invoice information listing items in each invoice. Then the following statement
generates a summary of each invoice named in the table, along with the total cost of its items. The second column
includes an alias because the default name for an expression is the expression itself, which is difficult to work
with:

CREATE TABLE dst_tbl

SELECT inv_no, SUM(unit_cost*quantity) AS total cost
FROM src_tbl

GROUP BY inv_no;

In fact, prior to MySQL 3.23.6, the alias is required, not just advisable; column naming rules are stricter and an
expression is not a legal name for a column in a table.

CREATE TABLE ... SELECT is extremely convenient, but does have some limitations. These stem primarily from the
fact that the information available from a result set is not as extensive as what you can specify in a CREATE TABLE
statement. If you derive a table column from an expression, for example, MySQL has no idea whether or not the
column should be indexed or what its default value is. If it's important to include this information in the destination
table, use the following techniques:

« If you want indexes in the destination table, you can specify them explicitly. For example, if src_tbl has a
PRIMARY KEY on the id column, and a multiple-column index on state and city, you can specify them for
dst_tbl as well:

e CREATE TABLE dst_tbl (PRIMARY KEY (id), INDEX(State,city))
SELECT * FROM src_tbl;

e Column attributes such as AUTO_INCREMENT and a column's default value are not copied to the destination
table. To preserve these attributes, create the table, then use ALTER TABLE to apply the appropriate
modifications to the column definition. For example, if src_tbl has an id column that is not only a
PRIMARY KEY but an AUTO_INCREMENT column, copy the table, then modify it:

° CREATE TABLE dst_tbl (PRIMARY KEY (id)) SELECT * FROM src_tbl;
ALTER TABLE dst_tbl MODIFY id INT UNSIGNED NOT NULL AUTO_INCREMENT;

« If you want to make the destination table an exact copy of the source table, use the cloning technique
described in Recipe 3.26.

3.24 Moving Records Between Tables Safely
3.24.1 Problem

You're moving records by copying them from one table to another and then deleting them from the original table.
But some records seem to be getting lost.

3.24.2 Solution
Be careful to delete exactly the same set of records from the source table that you copied to the destination table.
3.24.3 Discussion

Applications that copy rows from one table to another can do so with a single operation, such as INSERT ... SELECT
to retrieve the relevant rows from the source table and add them to the destination table. If an application needs to
move (rather than copy) rows, the procedure is a little more complicated: After copying the rows to the destination
table, you must remove them from the source table. Conceptually, this is nothing more than INSERT ... SELECT
followed by DELETE. In practice, the operation may require more care, because it's necessary to select exactly the
same set of rows in the source table for both the INSERT and DELETE statements. If other clients insert new rows
into the source table after you issue the INSERT and before you issue the DELETE, this can be tricky.

To illustrate, suppose you have an application that uses a working log table worklog into which records are entered
on a continual basis, and a long-term repository log table repolog. Periodically, you move worklog records into
repolog to keep the size of the working log small, and so that clients can issue possibly long-running log analysis
queries on the repository without blocking processes that create new records in the working log.=

BT you use a MylISAM log table that you only insert into and never delete from or modify, you can run queries on the table without preventing other clients from inserting new log
records at the end of the table.

How do you properly move records from worklog to repolog in this situation, given that worklog is subject to
ongoing insert activity? The obvious (but incorrect) way is to issue an INSERT ... SELECT statement to copy all the
worklog records into repolog, followed by a DELETE to remove them from worklog:

INSERT INTO repolog SELECT * FROM worklog;
DELETE FROM worklog;

This is a perfectly workable strategy when you're certain nobody else will insert any records into worklog during
the time between the two statements. But if other clients insert new records in that period, they'll be deleted
without ever having been copied, and you'll lose records. If the tables hold logs of web page requests, that may not
be such a big deal, but if they're logs of financial transactions, you could have a serious problem.

What can you do to keep from losing records? Two possibilities are to issue both statements within a transaction,
or to lock both tables while you're using them. These techniques are covered in Chapter 15. However, either one
might block other clients longer than you'd prefer, because you tie up the tables for the duration of both queries.
An alternative strategy is to move only those records that are older than some cutoff point. For example, if the log
records have a column t containing a timestamp, you can limit the scope of the selected records to all those created
before today. Then it won't matter whether new records are added to worklog between the copy and delete
operations. Be sure to specify the cutoff properly, though. Here's a method that fails under some circumstances:

INSERT INTO repolog SELECT * FROM worklog WHERE t < CURDATE();
DELETE FROM worklog WHERE t < CURDATE();

This won't work if you happen to issue the INSERT statement at one second before midnight and the SELECT
statement one second later. The value of CURDATE() will differ for the two statements, and the DELETE operation
may remove too many records. If you're going to use a cutoff, make sure it has a fixed value, not one that may
change between statements. For example, a SQL variable can be used to save the value of CURDATE() in a form
that won't change as time passes:

SET @cutoff = CURDATE();
INSERT INTO repolog SELECT * FROM worklog WHERE t < @cutoff;
DELETE FROM worklog WHERE t < @cutoff;

This ensures that both statements use the same cutoff value so that the DELETE
operation doesn't remove records that it shouldn't.

3.25 Creating Temporary Tables

3.25.1 Problem

You need a table only for a short time, then you want it to disappear automatically.
3.25.2 Solution

Create a TEMPORARY table and let MySQL take care of clobbering it.

3.25.3 Discussion

Some operations require a table that exists only temporarily and that should disappear when it's no longer needed.
You can of course issue a DROP TABLE statement explicitly to remove a table when you're done with it. Another
option, available in MySQL 3.23.2 and up, is to use CREATE TEMPORARY TABLE. This statement is just like CREATE
TABLE except that it creates a transient table that disappears when your connection to the server closes, if you
haven't already removed it yourself. This is extremely useful behavior because you need not remember to remove
the table. MySQL drops it for you automatically.

Temporary tables are connection-specific, so several clients each can create a temporary table having the same
name without interfering with each other. This makes it easier to write applications that use transient tables,
because you need not ensure that the tables have unique names for each client. (See Recipe 3.27 for further
discussion of this issue.)

Another property of temporary tables is that they can be created with the same name as a permanent table. In this
case, the temporary table "hides™ the permanent table for the duration of its existence, which can be useful for
making a copy of a table that you can modify without affecting the original by mistake. The DELETE statement in
the following set of queries removes records from a temporary mai I table, leaving the original permanent one
unaffected:

mysql> CREATE TEMPORARY TABLE mail SELECT * FROM mail;
mysql> SELECT COUNT(*) FROM mail;

o +
| COUNT(®) |
o +
| 16 |
o +

mysqgl> DELETE FROM mail;
mysql> SELECT COUNT(*) FROM mail;

o +
| COUNT(®) |
o +
| 01
o +

mysqgl> DROP TABLE mail;
mysqgl> SELECT COUNT(*) FROM mail;

o +
| COUNT(*) |
o +
| 16 |
o +

Although temporary tables created with CREATE TEMPORARY TABLE have the preceding benefits, keep the following
caveats in mind:

« If you want to reuse the temporary table within a given session, you'll still need to drop it explicitly before
recreating it. It's only the last use within a session that you need no explicit DROP TABLE for. (If you've
already created a temporary table with a given name, attempting to create a second one with that name
results in an error.)

e Some APIs support persistent connections in a web environment. Use of these prevents temporary tables
from being dropped as you expect when your script ends, because the web server keeps the connection

open for reuse by other scripts. (The server may close the connection eventually, but you have no control
over when that happens.) This means it can be prudent to issue the following statement prior to creating a
temporary table, just in case it's still hanging around from the previous execution of the script:

DROP TABLE IF EXISTS tbl_name

« If you modify a temporary table that "hides" a permanent table with the same name, be sure to test for
errors resulting from dropped connections. If a client program automatically reconnects after a dropped
connection, you'll be modifying the original table after the reconnect.

3.26 Cloning a Table Exactly
3.26.1 Problem

You need an exact copy of a table, and CREATE TABLE ... SELECT doesn't suit your purposes because the copy must
include the same indexes, default values, and so forth.

3.26.2 Solution

Use SHOW CREATE TABLE to get a CREATE TABLE statement that specifies the source table's structure, indexes and all.
Then modify the statement to change the table name to that of the clone table and execute the statement. If you
need the table contents copied as well, issue an INSERT INTO ... SELECT statement, too.

3.26.3 Discussion

Because CREATE TABLE ... SELECT does not copy indexes or the full set of column attributes, it doesn't necessarily
create a destination table as an exact copy of the source table. Because of that, you might find it more useful to
issue a SHOW CREATE TABLE query for the source table. This statement is available as of MySQL 3.23.20; it returns
a row containing the table name and a CREATE TABLE statement that corresponds to the table's structure—including
its indexes (keys), column attributes, and table type:

mysql> SHOW CREATE TABLE mail\G
Table: mail

Create Table: CREATE TABLE "mail” (
"t~ datetime default NULL,
“srcuser” char(8) default NULL,
“srchost”™ char(20) default NULL,
“dstuser” char(8) default NULL,
“dsthost™ char(20) default NULL,
“size” bigint(20) default NULL,
KEY "t~ (Ct))

) TYPE=MyISAM

By issuing a SHOW CREATE TABLE statement from within a program and performing a string replacement to change
the table name, you obtain a statement that can be executed to create a new table with the same structure as the
original. The following Python function takes three arguments (a connection object, and the names of the source
and destination tables). It retrieves the CREATE TABLE statement for the source table, modifies it to name the
destination table, and returns the result:

Generate a CREATE TABLE statement to create dst_tbl with the same
structure as the existing table src_tbl. Return None if an error
occurs. Requires the re module.

def gen_clone_query (conn, src_tbl, dst tbl):
try:
cursor = conn.cursor ()
cursor.execute ('SHOW CREATE TABLE " + src_tbl)
row = cursor.fetchone ()
cursor.close ()
it row == None:
query = None
else:
Replace src_tbl with dst _tbl in the CREATE TABLE statement
query = re.sub (""CREATE TABLE .* " + src_tbl + """,
"CREATE TABLE ~'" + dst_tbl + "™,
row[1])
except:
query = None
return query

You can execute the resulting statement as is to create the new table if you like:

query = gen_clone_query (conn, old_tbl, new_tbl)
cursor = conn.cursor ()

cursor.execute (query)

cursor.close ()

Or you can get more creative. For example, to create a temporary table rather than a permanent one, change
CREATE to CREATE TEMPORARY before executing the statement:

query = gen_clone_query (conn, old_tbl, new_tbl)

query = re.sub ('CREATE ', "CREATE TEMPORARY ', query)
cursor = conn.cursor ()

cursor.execute (query)

cursor.close ()

Executing the statement returned by gen_clone_query() creates an empty copy of the source table. To copy the
contents as well, do something like this after creating the copy:

cursor = conn.cursor ()
cursor.execute ("INSERT INTO " + new_tbl + * SELECT * FROM " + old_tbl)
cursor.close ()

- Prior to MySQL 3.23.50, there are a few attributes that you can specify in a CREATE TABLE

a3 4. statement that SHOW CREATE TABLE does not display. If your source table was created with
any of these attributes, the cloning technique shown here will create a destination table that
does not have quite the same structure.

Rl

3.27 Generating Unique Table Names

3.27.1 Problem

You need to create a table with a name that is guaranteed not to exist already.
3.27.2 Solution

If you can create a TEMPORARY table, it doesn't matter if the name exists already. Otherwise, try to generate a value
that is unique to your client program and incorporate it into the table name.

3.27.3 Discussion

MySQL is a multiple-client database server, so if a given script that creates a transient table might be invoked by
several clients simultaneously, you must take care to keep multiple invocations of the script from fighting over the
same table name. If the script creates tables using CREATE TEMPORARY TABLE, there is no problem because different
clients can create temporary tables having the same name without clashing.

If you can't use CREATE TEMPORARY TABLE because the server version is older than 3.23.2, you should make sure
that each invocation of the script creates a uniquely named table. To do this, incorporate into the name some value
that is guaranteed to be unique per invocation. A timestamp won't work, because it's easily possible for two
instances of a script to be invoked within the same second. A random number may be somewhat better. For
example, in Java, you can use the java.util .Random() class to create a table name like this:

import java.util_Random;
import java.lang.Math;

Random rand = new Random ();

int n = rand.nextint (); // generate random number
n = Math.abs (n); // take absolute value
String tbIName = "tmp_tbl_" + n;

Unfortunately, random numbers only reduce the possibility of name clashes, they do not eliminate it. Process 1D
(PID) values are a better source of unique values. PIDs are reused over time, but never for two processes at the
same time, so a given PID is guaranteed to be unique among the set of currently executing processes. You can use
this fact to create unique table names as follows:

Perl:

my $tbl _name = "tmp_tbl_ 3";

PHP:

$tbl_name = "tmp_tbl " . posix_getpid ();

Python:

import os
tbl_name = "tmp_tbl_%d" % os.getpid ()

Note that even if you create a table name using a value like a PID that is guaranteed to be unique to a given script
invocation, there may still be a chance that the table will exist. This can happen if a previous invocation of the
script with the same PID created a table with the same name, but crashed before removing the table. On the other
hand, any such table cannot still be in use because it will have been created by a process that is no longer running.
Under these circumstances, it's safe to remove the table if it does exist by issuing the following statement:

DROP TABLE IF EXISTS tbl_name

Then you can go ahead and create the new table.

Chapter 4. Working with Strings

Section 4.1. Introduction

Section 4.2. Writing Strings That Include Quotes or Special Characters

Section 4.3. Preserving Trailing Spaces in String Columns

Section 4.4. Testing String Equality or Relative Ordering

Section 4.5. Decomposing or Combining Strings

Section 4.6. Checking Whether a String Contains a Substring

Section 4.7. Pattern Matching with SQL Patterns

Section 4.8. Pattern Matching with Reqular Expressions

Section 4.9. Matching Pattern Metacharacters Literally

Section 4.10. Controlling Case Sensitivity in String Comparisons

Section 4.11. Controlling Case Sensitivity in Pattern Matching

Section 4.12. Using FULLTEXT Searches

Section 4.13. Using a FULLTEXT Search with Short Words

Section 4.14. Requiring or Excluding FULLTEXT Search Words

Section 4.15. Performing Phrase Searches with a FULLTEXT Index

4.1 Introduction

Like most data types, strings can be compared for equality or inequality or relative ordering. However, strings have
some additional properties to consider:

e Strings can be case sensitive (or not), which can affect the outcome of string operations.
e You can compare entire strings, or just parts of them by extracting substrings.
e You can apply pattern-matching operations to look for strings that have a certain structure.

This chapter discusses several useful string operations you can perform, including how to account for whether or
not strings are case sensitive.

The following table, metal, is used in several sections of this chapter:

mysql> SELECT * FROM metal;
| name |

copper |
gold |
iron |
lead |
mercury |
platinum |
silver |
tin |

The table is very simple, containing only a single string column:

CREATE TABLE metal
(

)s;

name VARCHAR(20)

You can create the table using the metal.sql script in the tables directory of the recipes distribution.

4.1.1 Types of Strings

MySQL can operate on regular strings or binary strings. "Binary" in this context has little to do with the presence
of non-ASCII values, so it's useful right at the outset to make a distinction:

« Binary data may contain bytes that lie outside the usual range of printable ASCII characters.
e A binary string in MySQL is one that MySQL treats as case sensitive in comparisons. For binary strings,
the characters A and a are considered different. For non-binary strings, they're considered the same.

A binary column type is one that contains binary strings. Some of MySQL's column types are binary (case
sensitive) and others are not, as illustrated here:

Column type Binary/case sensitive
CHAR, VARCHAR No
CHAR BINARY, VARCHAR BINARY Yes
TEXT No
BLOB Yes
ENUM, SET No

4.2 Writing Strings That Include Quotes or Special Characters
4.2.1 Problem

You want to write a quoted string, but it contains quote characters or other special characters, and MySQL rejects
it.

4.2.2 Solution

Learn the syntax rules that govern the interpretation of strings in queries.

4.2.3 Discussion

To write a string in a SQL statement, surround it with quote characters:

mysqgl> SELECT “hello, world-®;

But sometimes you need to write a string that includes a quote character, and if you just put the quote into the
string as is, a syntax error results:

mysql> SELECT "1"m asleep”;
ERROR 1064 at line 1: You have an error in your SQL syntax near “asleep™”
at line 1

You can deal with this several ways:

e MySQL, unlike some SQL engines, allows you to quote strings with either single quotes or double quotes,
so you can enclose a string containing single quotes within double quotes:
o mysqgl> SELECT "1"m asleep";

° | I™m asleep |

This works in reverse, too; a string containing double quotes can be enclosed within single quotes:

mysql> SELECT “He said, ""Boo!"";

o +
| He said, "Boo!" |
o +
| He said, "Boo!" |
o +

e Toinclude a quote character within a string that is quoted by the same kind of quote, either double the
quote or precede it with a backslash. When MySQL reads the query string, it will strip off the extra quote

or the backslash:
° mysql> SELECT "1""m asleep®, "I\"m wide awake~;

° o o +

° | I"m asleep | I"m wide awake |

° o o +

o | 1°'m asleep | I"m wide awake |

° Fom e Fom +

° 1 row in set (0.00 sec)

° mysqgl> SELECT "‘He said, ""Bool'* , "And 1 said, \"Yikes!\"";

° o Sy +

° | He said, "Boo!" | And 1 said, "Yikes!" |

° e e +

° | He said, "Boo!"™ | And 1 said, "Yikes!" |
Ny Sy +

A backslash turns off the special meaning of the following character. (It causes a temporary escape from normal
string processing rules, so sequences such as * and \"* are called escape sequences.) This means that backslash

itself is special, so to write a literal backslash within a string, you must double it:

mysqgl> SELECT “Install MySQL in C:\\mysgl on Windows";

Other escape sequences recognized by MySQL are \b (backspace), \n (newline, also called linefeed), \r (carriage

return), \t (tab), and \o (ASCII NUL).

4.2.4 See Also

Use of escape sequences for writing string values is best limited to text values. Values such as images that contain
arbitrary data also must have any special characters escaped if you want to include them in a query string, but
trying to enter an image value by typing it in is too painful even to think about. You should construct such queries
from within a program where you can use the placeholder mechanism provided by the language's MySQL API.

See Recipe 2.7.

4.3 Preserving Trailing Spaces in String Columns
4.3.1 Problem

MySQL strips trailing spaces from strings, but you want to preserve them.

4.3.2 Solution

Use a different column type.

4.3.3 Discussion

If you store a string that contains trailing spaces into the database, you may find that they're gone when you
retrieve the value. This is the normal MySQL behavior for CHAR and VARCHAR columns; the server returns values
from both types of columns without trailing spaces. If you want to preserve trailing spaces, use one of the TEXT or
BLOB column types. (The TEXT types are not case sensitive, the BLOB types are.) The following example illustrates
the difference in behavior for VARCHAR and TEXT columns:

mysql> CREATE TABLE t (c VARCHAR(255));

mysql> INSERT INTO t (c) VALUES("abc ")
mysql> SELECT c, LENGTH(c) FROM t;

T TR +

| c | LENGTH(c) |

mysql> DROP TABLE t;

mysqgl> CREATE TABLE t (c TEXT);

mysql> INSERT INTO t (c) VALUES("abc ")
mysql> SELECT c, LENGTH(c) FROM t;

There are plans to introduce a VARCHAR type that retains trailing spaces in a future version of MySQL.

4.4 Testing String Equality or Relative Ordering

4.4.1 Problem

You want to know whether strings are equal or unequal, or which one appears first in lexical order.
4.4.2 Solution

Use a comparison operator.

4.4.3 Discussion

Strings are subject to the usual equality and inequality comparisons:

mysgl> SELECT name, name = "lead", name != "lead” FROM metal;

I

+

| copper |
| gold |
| iron |
| lead |
| mercury |
| platinum |
| silver |
| tin |
+

o ————— ——— o —

You can also use relational operators such as <, <=, >=, and > to test strings for lexical ordering:

mysgl> SELECT name, name < "lead", name > "lead” FROM metal;
_______________ +

name < “lead” name > “lead” |

|
U,
copper |
gold |
iron |
lead |
|

platinum |
|

|

+

silver

|

|

|

|

| mercury
|

| si

| tin

To find out whether a string lies within a given range of values (inclusive), you can combine two comparisons:

mysgl> SELECT name, "iron”" <= name AND name <= "platinum® FROM metal;

| gold I 0 |
| iron | 1]
| lead | 1]
| mercury | 1]
| platinum | 1]
| silver | 0 |
| tin | 0 |
Fom e - +

You can also use the BETWEEN operator for inclusive-range testing. The following query is equivalent to the one
just shown:

SELECT name, name BETWEEN "iron® AND “platinum® FROM metal;

4.4.4 See Also

The outcome of a string comparison may be affected by whether or not the operands are binary strings, as
discussed in Recipe 4.10.

4.5 Decomposing or Combining Strings

4.5.1 Problem

You want to break apart a string to extract a substring or combine strings to form a larger string.
4.5.2 Solution

To obtain a piece of a string, use a substring-extraction function. To combine strings, use CONCAT().
4.5.3 Discussion

Parts of strings can be extracted and displayed. For example, LEFT(), MID(), and RIGHT() extract substrings
from the left, middle, or right part of a string:

mysqgl> SELECT name, LEFT(name,2), MID(name,3,1), RIGHT(name,3) FROM metal;

o o o o +
| name | LEFT(name,2) | MID(name,3,1) | RIGHT(name,3) |
T —— T S S +
copper	co I p	per	
gold	go	1	old
iron	ir	o	ron
lead	le	a	ead
mercury	me	r	ury
platinum	pl	a	num
silver	si	1	ver
tin	ti	n	tin
Fom e o Ry o +

For LEFT() and RIGHT(), the second argument indicates how many characters to return from the left or right
end of the string. For MID(), the second argument is the starting position of the substring you want (beginning
from 1) and the third argument indicates how many characters to return.

The SUBSTRING() function takes a string and a starting position, returning everything to the right of the position.x
WMID() acts the same way if you omit its third argument, because MID () is actually a synonym for SUBSTRING().

mysqgl> SELECT name, SUBSTRING(name,4), MID(nhame,4) FROM metal;

Fom e e o +
| name | SUBSTRING(name,4) | MID(nhame,4) |
e e o +
copper	per	per
gold	d	d
iron	n	n
lead	d	d
mercury	cury	cury
platinum	tinum	tinum
silver	ver	ver
tin I I		
o e o +

To return everything to the right or left of a given character, use SUBSTRING_INDEX(str,c,n). It searches into a
string str for the n-th occurrence of the character c and returns everything to its left. If n is negative, the search for
c starts from the right and returns everything to the right of the character:

mysql> SELECT name,
-> SUBSTRING_INDEX(name, "r-",2),
-> SUBSTRING_INDEX(nhame, "i",-1)
-> FROM metal;

Fom e Ry gy +
| name | SUBSTRING_INDEX(name, "r=,2) | SUBSTRING_INDEX(name,"i",-1) |
o e ey +
copper	copper	copper
gold	gold	gold
iron	iron	ron
lead	lead	lead
mercury	mercu	mercury
platinum	platinum	num
silver	silver	Iver
tin	tin	n
Fom e Ry gy +

Note that if there is no n-th occurrence of the character, SUBSTRING_INDEX() returns the entire string.
SUBSTRING_INDEX() is case sensitive.

Substrings can be used for purposes other than display, such as to perform comparisons. The following query finds
metal names having a first letter that lies in the last half of the alphabet:

mysgl> SELECT name from metal WHERE LEFT(name,l1l) >= "n-;

| platinum |
| silver |
| tin |

To combine strings rather than pull them apart, use the CONCAT() function. It concatenates all its arguments and
returns the result:

mysql> SELECT CONCAT("Hello, ",USER(),", welcome to MySQL!") AS greeting;

S +
| greeting |
- +
| Hello, paul@localhost, welcome to MySQL! |
S +

mysql> SELECT CONCAT(name, " ends in "d": *,IF(RIGHT(name,1)="d","YES","NO"))
-> AS “ends iIn "d"?*
-> FROM metal ;

| copper ends in "d": NO
| gold ends in "d": YES
| iron ends in *d":

| lead ends in "d": YES
| mercury ends in "d": NO
| platinum ends in "d": NO
| silver ends in "d": NO

I

tin ends in "d": NO

Concatenation can be useful for modifying column values "in place.” For example, the following UPDATE statement
adds a string to the end of each name value in the metal table:

mysql> UPDATE metal SET name = CONCAT(name, "ide");
mysgl> SELECT name FROM metal;

| copperide |
| goldide |
| ironide |
| leadide |
| mercuryide |
| platinumide |
| silveride |
| tinide |

To undo the operation, strip off the last three characters (the LENGTH() function returns the length of a string):

mysql> UPDATE metal SET name = LEFT(name,LENGTH(nhame)-3);
mysqgl> SELECT name FROM metal;

| copper |
| gold |
| iron |
| lead |
| mercury |
| platinum |
| silver |
| tin |

The concept of modifying a column in place can be applied to ENUM or SET values as well, which usually can be
treated as string values even though they are stored internally as numbers. For example, to concatenate a SET
element to an existing SET column, use CONCAT() to add the new value to the existing value, preceded by a
comma. But remember to account for the possibility that the existing value might be NULL or the empty string. In
that case, set the column value equal to the new element, without the leading comma:

UPDATE tbl_name
SET set_col = IF(set_col IS NULL OR set_col = "",val ,CONCAT(set_col,",",val));

4.6 Checking Whether a String Contains a Substring
4.6.1 Problem

You want to know whether a given string occurs within another string.
4.6.2 Solution

Use LOCATE().

4.6.3 Discussion

The LOCATE() function takes two arguments representing the substring that you're looking for and the string in
which to look for it. The return value is the position at which the substring occurs, or 0 if it's not present. An
optional third argument may be given to indicate the position within the string at which to start looking.

mysql> SELECT name, LOCATE("in®,name), LOCATE("in",name,3) FROM metal;

|
+

| copper |
| gold |
| iron |
| lead |
| mercury |
| platinum |
| silver |
| tin |
+

o ———— — — —— o —

LOCATE() is not case sensitive as of MySQL 4.0.0, and is case sensitive before that.

4.7 Pattern Matching with SQL Patterns
4.7.1 Problem

You want to perform a pattern match rather than a literal comparison.

4.7.2 Solution

Use the LIKE operator and a SQL pattern, described in this section. Or use a regular expression pattern match,
described in Recipe 4.8.

4.7.3 Discussion

Patterns are strings that contain special characters. These are known as metacharacters because they stand for
something other than themselves. MySQL provides two kinds of pattern matching. One is based on SQL patterns
and the other on regular expressions. SQL patterns are more standard among different database systems, but
regular expressions are more powerful. The two kinds of pattern match uses different operators and different sets
of metacharacters. This section describes SQL patterns; Recipe 4.8 describes regular expressions.

SQL pattern matching uses the LIKE and NOT LIKE operators rather than = and = to perform matching against a
pattern string. Patterns may contain two special metacharacters: _ matches any single character, and % matches any
sequence of characters, including the empty string. You can use these characters to create patterns that match a
wide variety of values:

Strings that begin with a particular substring:
mysql> SELECT name FROM metal WHERE name LIKE “co%";

Strings that end with a particular substring:
mysql> SELECT name FROM metal WHERE name LIKE “%er";

| copper |
| silver |

e o o o o o o
=)
o)}
3
®

o Strings that contain a particular substring anywhere:
° mysql> SELECT name FROM metal WHERE name LIKE "%er%";

° F——_——————— +
° | name |
° F——_———— +
° | copper |
° | mercury |
° | silver |
Fom——_—— — +

« Strings that contain a substring at a specific position (the pattern matches only if pp occurs at the third
position of the name column):
° mysqgl> SELECT name FROM metal where name LIKE *_ pp%~;

° F——————— +
o | name |
° - +
° | copper |
o +

A SQL pattern matches successfully only if it matches the entire comparison value. Thus, of the following two
pattern matches, only the second succeeds:

"abc”™ LIKE "b*
"abc®™ LIKE "%b%"

To reverse the sense of a pattern match, use NOT LIKE. The following query finds strings that contain no i
characters:

mysqgl> SELECT name FROM metal WHERE name NOT LIKE "%i%";

| copper |
| gold |
| lead |
| |

mercury

SQL patterns do not match NULL values. This is true both for LIKE and NOT LIKE:

mysqgl> SELECT NULL LIKE ®%®, NULL NOT LIKE "%";
e e +

| NULL LIKE "%" | NULL NOT LIKE "%" |

In some cases, pattern matches are equivalent to substring comparisons. For example, using patterns to find strings
at one end or the other of a string is like using LEFT() or RIGHT():

Pattern match Substring comparison
str LIKE “abc%"” LEFT(str,3) = "abc*
str LIKE "%abc” RIGHT(str,3) = "abc”

If you're matching against a column that is indexed and you have a choice of using a pattern or an equivalent
LEFT() expression, you'll likely find that the pattern match is faster. MySQL can use the index to narrow the
search for a pattern that begins with a literal string; with LEFT(), it cannot.

Sidebar 1. Using Patterns with Non-String
Values

Unlike some other databases, MySQL allows pattern matches to be applied to numeric or date values,
which can sometimes be useful. The following table shows some ways to test a DATE value d using
function calls that extract date parts and using the equivalent pattern matches. The pairs of expressions
are true for dates occurring in the year 1976, in the month of April, or on the first day of the month:

Function value test Pattern match test
YEAR(d) = 1976 d LIKE "1976-%"
MONTH(d) = 4 d LIKE "%-04-%"
DAYOFMONTH(d) = 1 d LIKE "%-01"

4.8 Pattern Matching with Regular Expressions
4.8.1 Problem

You want to perform a pattern match rather than a literal comparison.

4.8.2 Solution

Use the REGEXP operator and a regular expression pattern, described in this section. Or use a SQL pattern,
described in Recipe 4.7.

4.8.3 Discussion

SQL patterns (see Recipe 4.7) are likely to be implemented by other database systems, so they're reasonably
portable beyond MySQL. On the other hand, they're somewhat limited. For example, you can easily write a SQL

pattern %abc% to find strings that contain abc, but you cannot write a single SQL pattern to identify strings that
contain any of the characters a, b, or c. Nor can you match string content based on character types such as letters or
digits. For such operations, MySQL supports another type of pattern matching operation based on regular
expressions and the REGEXP operator (or NOT REGEXP to reverse the sense of the match).2 REGEXP matching uses a
different set of pattern elements than % and _ (neither of which is special in regular expressions):

@ RLIKE is a synomym for REGEXP. This is for mSQL (miniSQL) compatibility and may make it easier to port queries from mSQL to MySQL.

Pattern What the pattern matches
n Beginning of string
$ End of string

Any single character

[---1 Any character listed between the square brackets
["---1 Any character not listed between the square brackets
pllp2|p3 Alternation; matches any of the patterns p1, p2, or p3
* Zero or more instances of preceding element
+ One or more instances of preceding element
{n} n instances of preceding element
{m,n} m through n instances of preceding element

You may already be familiar with these regular expression pattern characters, because many of them are the same
as those used by vi, grep, sed, and other Unix utilities that support regular expressions. Most of them are used also
in the regular expressions understood by Perl, PHP, and Python. (For example, Chapter 10 discuss pattern
matching in Perl scripts.) For Java, the Jakarta ORO or Regexp class libraries provide matching capabilities that
use these characters as well.

The previous section on SQL patterns showed how to match substrings at the beginning or end of a string, or at an
arbitrary or specific position within a string. You can do the same things with regular expressions:

Strings that begin with a particular substring:
mysqgl> SELECT name FROM metal WHERE name REGEXP *~co-;

Strings that end with a particular substring:
mysql> SELECT name FROM metal WHERE name REGEXP “er$-;

| copper |
| silver |

Strings that contain a particular substring at any position:
mysql> SELECT name FROM metal WHERE name REGEXP “er”®;

| copper
| mercury
| silver

e o o o o o o o
>
o)}
3
D

Strings that contain a particular substring at a specific position:
mysql> SELECT name FROM metal WHERE name REGEXP “~._pp~;

In addition, regular expressions have other capabilities and can perform kinds of matches that SQL patterns cannot.
For example, regular expressions can contain character classes, which match any character in the class:

e To write a character class, list the characters you want the class to match inside square brackets. Thus, the
pattern [abc] matches either a, b, or c.

o Classes may indicate ranges of characters by using a dash between the beginning and end of the range. [a-
z] matches any letter, [0-97 matches digits, and [a-z0-9] matches letters or digits.

o To negate a character class ("match any character but these™), begin the list with a ~ character. For
example, [~0-9] matches anything but digits.

MySQL's regular expression capabilities also support POSIX character classes. These match specific character
sets, as described in the following table.

POSIX class What the class matches
[:alnum:] Alphabetic and numeric characters
[:alpha:] Alphabetic characters
[:blank:] Whitespace (space or tab characters)

POSIX class What the class matches
[-cntri:] Control characters
[-digit:] Digits
[:graph:] Graphic (non-blank) characters
[:lower:] Lowercase alphabetic characters
[:print:] Graphic or space characters
[:punct:] Punctuation characters
[:space:] Space, tab, newline, carriage return
[:upper:] Uppercase alphabetic characters
[:xdigit:] Hexadecimal digits (0-9, a-F, A-F)

POSIX classes are intended for use within character classes, so you use them within square brackets. The
following expression matches values that contain any hexadecimal digit character:

mysql> SELECT name, name REGEXP "[[:xdigit:]]" FROM metal;

I

+
copper |
gold |
iron |
lead |
I

platinum |
I

I

+

silver
tin

|
|
|
|
| mercury
|
|
|
Regular expressions can contain alternations. The syntax looks like this:

alternativel]alternative?]...

An alternation is similar to a character class in the sense that it matches if any of the alternatives match. But unlike
a character class, the alternatives are not limited to single characters—they can be strings or even patterns. For
example, the following alternation matches strings that begin with a vowel or end with er:

mysqgl> SELECT name FROM metal WHERE name REGEXP “~[aeiou]]er$”;

| copper |
| iron |
| silver |

Parentheses may be used to group alternations. For example, if you want to match strings that consist entirely of
digits or entirely of letters, you might try this pattern, using an alternation:

mysqgl> SELECT "Om®" REGEXP *~[[:digit:]]+|[[:alpha:]1]+$";

ey +
| "Om" REGEXP "~[[:digit:]]1+|[[:alpha:]1]1+$" |
S +
I 1]
ey +

But as the query result shows, the pattern doesn't work. That's because the ~ groups with the first alternative, and
the $ groups with the second alternative. So the pattern actually matches strings that begin with one or more digits,
or strings that end with one or more letters. However, if you group the alternatives within parentheses, the ~ and $
will apply to both of them and the pattern will act as you expect:

mysqgl> SELECT "Om" REGEXP "~A([[:digit:]]+|[[:alpha:1]+)$";

e +
| "Om®™ REGEXP *~([[:digit:]]+|[[:alpha:]1]1+)$" |
gy +
I 0|
e +

Unlike SQL pattern matches, which are successful only if the pattern matches the entire comparison value, regular
expressions are successful if the pattern matches anywhere within the value. The following two pattern matches are
equivalent in the sense that each one succeeds only for strings that contain a b character, but the first is more
efficient because the pattern is simpler:

"abc®" REGEXP "b*"
"abc® REGEXP *"~_*b._*$"
Regular expressions do not match NULL values. This is true both for REGEXP and for NOT REGEXP:

mysqgl> SELECT NULL REGEXP =".*", NULL NOT REGEXP ".*";

e e +
| NULL REGEXP *®_.*"] NULL NOT REGEXP =*.**" |
o S +
I NULL | NULL |
e S +

The fact that a regular expression matches a string if the pattern is found anywhere in the string means you must
take care not to inadvertently specify a pattern that matches the empty string. If you do, it will match any non-NULL
value at all. For example, the pattern a* matches any number of a characters, even none. If your goal is to match
only strings containing nonempty sequences of a characters, use a+ instead. The + requires one or more instances
of the preceding pattern element for a match.

As with SQL pattern matches performed using LIKE, regular expression matches performed with REGEXP
sometimes are equivalent to substring comparisons. The ~ and $ metacharacters serve much the same purpose as
LEFT() or RIGHT(), at least if you're looking for literal strings:

Pattern match Substring comparison
str REGEXP “~abc* LEFT(str,3) = "abc"
str REGEXP "abc$” RIGHT(str,3) = "abc"

For non-literal strings, it's typically not possible to construct an equivalent substring comparison. For example, to
match strings that begin with any nonempty sequence of digits, you can use this pattern match:

str REGEXP "~[0-9]+"

That is something that LEFT() cannot do (and neither can LIKE, for that matter).

4.9 Matching Pattern Metacharacters Literally

4.9.1 Problem

You want to perform a pattern match for a literal instance of a character that's special in patterns.

4.9.2 Solution

Escape the special character with a backslash. Or maybe two.

4.9.3 Discussion

Pattern matching is based on the use of metacharacters that have a special meaning and thus stand for something
other than themselves. This means that to match a literal instance of a metacharacter, you must turn off its special

meaning somehow. Do this by using a backslash character (\). Assume that a table metachar contains the
following rows:

mysql> SELECT c FROM metachar;

Fo—— +
| c |
o +
| % |
_
»
$
I\ |

A pattern consisting only of either SQL metacharacter matches all the values in the table, not just the
metacharacter itself:

mysqgl> SELECT c, ¢ LIKE *%", c LIKE *_* FROM metachar;

S o e +
| c | ¢ LIKE "% | ¢ LIKE "_" |
. o ey, +
| % | 1] 1]
| _ | 1] 1]
| - | 1] 1]
| » | 1] 1]
| $ | 1] 1]
I\ | 1] 1]
. e e +

To match a literal instance of a SQL pattern metacharacter, precede it with a backslash:

mysqgl> SELECT c, ¢ LIKE *\%", c LIKE "_* FROM metachar;

S o e +
| ¢ | ¢ LIKE "\%" | ¢ LIKE "_" |
oo o~ Sy +
| % | 1] 0|
| _ | 0| 1]
-	0	0
°	0	0
$	0	0
I\ | 01 01
. o e +

The principle is somewhat similar for matching regular expression metacharacters. For example, each of the
following regular expressions matches every row in the table:

mysqgl> SELECT c, ¢ REGEXP ".", c REGEXP "~", c REGEXP "$" FROM metachar;

oo o e o +
| c | ¢ REGEXP "." | ¢ REGEXP "~" | ¢ REGEXP "$" |
. e Sy Sy +
I % I 1] 1] 1]
| _ I 1] 1] 1]
| - [1] 1] 1]
|~ I 1] 1] 1]
| $ I 1] 1] 1]
I\ I 1] 1] 1]
S e e e +

To match the metacharacters literally, just add a backslash, right? Well, try it:

mysqgl> SELECT c, ¢ REGEXP "\.", c REGEXP "\"", c REGEXP "\$" FROM metachar;

S e Sy S +
| c | ¢ REGEXP "\." | ¢ REGEXP "\~" | c REGEXP "\$" |
. o Ly, o +
| % I 1] 1] 1]
| _ I 1] 1] 1]
I - I 1] 1] 1]

 ———

It didn't work, because regular expressions are processed a bit differently than SQL patterns. With REGEXP, you
need a double backslash to match a metacharacter literally:

mysql> SELECT c, ¢ REGEXP "\\.", c REGEXP "\\"", c REGEXP "\\$" FROM metachar;

oo S S S +
| c | ¢ REGEXP "\\." | ¢ REGEXP "*" | c REGEXP "\\$" |
. S gy gy +
%	0	0	0
_	0	0	0
-	1] 0	0	
»	0	1] 0	
$	0	0	1]
I\ | 0 | 0 | 0 |
oo S S S +

Because backslash suppresses the special meaning of metacharacters, backslash itself is special. To match a
backslash literally, use double backslashes in SQL patterns or quadruple backslashes in regular expressions:

mysqgl> SELECT c, c¢ LIKE "\\", c REGEXP *\" FROM metachar;

o e . +
| c | ¢ LIKE "\\" | c REGEXP “"\\\\" |
e e i +
%	0	0
_	0	0
-	0	0
°	0	0
$	0	0
I\ | 1] 1]
o S o +

It's even worse trying to figure out how many backslashes to use when you're issuing a query from within a
program. It's more than likely that backslashes are also special to your programming language, in which case you'll
need to double each one.

Within a character class, use these marks to include literal instances of the following class constructor characters:

e Toinclude a literal] character, list it first.

e Toinclude a literal - character, list it first or last.

e Toinclude a literal ~ character, list it somewhere other than as the first character.
e Toinclude a literal \ character, double it.

4.10 Controlling Case Sensitivity in String Comparisons
4.10.1 Problem

A string comparison is case sensitive when you don't want it to be, or vice versa.

4.10.2 Solution

Alter the case sensitivity of the strings.

4.10.3 Discussion

The examples in previous sections were performed without regard to lettercase. But sometimes you need to make
sure a string operation is case sensitive that would not otherwise be, or vice versa. This section describes how to do
that for ordinary comparisons. Recipe 4.11 covers case sensitivity in pattern-matching operations.

String comparisons in MySQL are not case sensitive by default:

mysql> SELECT name, name = “lead”, name = "LEAD®" FROM metal;

_______________ +
| name = "LEAD" |
U,

| copper |

| gold I

| iron |

| lead |
| mercury |
| platinum |
| silver |
| tin |

+

o ————— ——— o —

The lack of case sensitivity also applies to relative ordering comparisons:

mysgl> SELECT name, name < "lead", name < "LEAD" FROM metal;
_______________ +

name < “lead” name < “LEAD" |

|
S
copper |
gold |
iron |
lead |
|

platinum |
|

|

+

silver

|

|

|

|

| mercury
|

| si

| tin

If you're familiar with the ASCII collating order, you know that lowercase letters have higher ASCII codes than
uppercase letters, so the results in the second comparison column of the preceding query may surprise you. Those

results reflect that string ordering is done by default without regard for lettercase, so A and a both are considered
lexically less than B.

String comparisons are case sensitive only if at least one of the operands is a binary string. To control case
sensitivity in string comparisons, use the following techniques:

o To make a string comparison case sensitive that normally would not be, cast (convert) one of the strings to
binary form by using the BINARY keyword. It doesn't matter which of the strings you make binary. As long
as one of them is, the comparison will be case sensitive:

° mysql> SELECT name, name = BINARY "lead®, BINARY name = "LEAD" FROM metal;

o S T o o +
° | name | name = BINARY "lead™ | BINARY name = “LEAD" |
o R —— S S +
o | copper | 01 01
° | gold | 0| 0|
. | iron | 01 0|
o | lead | 1] 01
° | mercury | 0| 01
o | platinum | 01 01
° | silver | 0 | 0|
o | tin | 01 01
TR —— Sy o +

BINARY is available as a cast operator as of MySQL 3.23.

o To make a string comparison not case sensitive that normally would be, convert both strings to the same
lettercase using UPPER() or LOWER():
. mysql> SELECT UPPER("A"), UPPER("b"), UPPER("A") < UPPER("b");

° e e ey +
. | UPPER("A") | UPPER("b") | UPPER("A") < UPPER("b") |
. o . o +
. | A B | 1]
. o . o +
e mysql> SELECT LOWER("A"), LOWER("b"), LOWER("A") < LOWER("b");
. e o ey +
. | LOWER("A"™) | LOWER("b") | LOWER("A") < LOWER("b") |
. e e Sy +
. | a | b | 1]
o o e +

The same principles can be applied to string comparison functions. For example, STRCMP() takes two string
arguments and returns -1, 0, or 1, depending on whether the first string is lexically less than, equal to, or greater
than the second. Up through MySQL 4.0.0, STRCMP() is case sensitive; it always treats its arguments as binary
strings, regardless of their actual type:

mysql> SELECT STRCMP("Abc","abc”), STRCMP("abc®,abc"), STRCMP(“abc”,*Abc");

o S S +
| STRCMP("Abc","abc™) | STRCMP("abc®,"abc®) | STRCMP("abc®,*Abc") |

e e o +
| -1 01 1]
o S S +

However, as of MySQL 4.0.1, STRCMP() is not case sensitive:

mysql> SELECT STRCMP("Abc","abc”), STRCMP("abc®,abc"), STRCMP(“abc”,*Abc");

e S S +
| STRCMP("Abc™,*abc®) | STRCMP("abc®,"abc®) | STRCMP(“abc®,"Abc®) |
o S S +
| 0 | 0 | 0 |
e gy gy +

To preserve the pre-4.0.1 behavior, make one of the arguments a binary string:

mysqgl> SELECT STRCMP(BINARY "Abc*","abc"), STRCMP(BINARY "abc™,"Abc");

Sy e +
| STRCMP(BINARY "Abc”,"abc®) | STRCMP(BINARY "abc®,"Abc®) |
S ey +
| -1 1]
e Sy +

By the way, take special note of the fact that zero and nonzero return values from STRCMP() indicate equality and
inequality. This differs from the = comparison operator, which returns zero and nonzero for inequality and
equality.

To avoid surprises in string comparisons, know the general rules that determine whether or not a string is binary:

o Any literal string, string expression, or string column can be made binary by preceding it with the BINARY
keyword. If BINARY is not present, the following rules apply.

e Astring expression is binary if any of its constituent strings is binary, otherwise not. For example, the
result returned by this CONCAT() expression is binary because its second argument is binary:

CONCAT("This is a ",BINARY "binary®," string”)

e Astring column is case sensitive or not depending on the column’s type. The CHAR and VARCHAR types are
not case sensitive by default, but may be declared as BINARY to make them case sensitive. ENUM, SET, and
TEXT columns are not case sensitive. BLOB columns are case sensitive. (See the table in Recipe 4.1.)

In summary, comparisons are case sensitive if they involve a binary literal string or string expression, or a CHAR
BINARY, VARCHAR BINARY, or BLOB column. Comparisons are not case sensitive if they involve only non-binary
literal strings or string expressions, or CHAR, VARCHAR, ENUM, SET, or TEXT columns.

ENUM and SET columns are not case sensitive. Furthermore, because they are stored internally as numbers, you
cannot declare them case sensitive in the table definition by adding the BINARY keyword. However, you can still
use the BINARY keyword before ENUM or SET values in comparisons to produce a case sensitive operation.

Sidebar 2. Case Sensitivity and String
Comparison Speed

In general, case-sensitive comparisons involving binary strings are slightly faster than non-case-
sensitive comparisons, because MySQL need not take lettercase into account during the comparison.

If you find that you've declared a column using a type that is not suitable for the kind of comparisons for which
you typically use it, use ALTER TABLE to change the type. Suppose you have a table in which you store news
articles:

CREATE TABLE news

(
id INT UNSIGNED NOT NULL AUTO INCREMENT,
article BLOB NOT NULL,
PRIMARY KEY (id)

);

Here the article column is declared as a BLOB, which is a case-sensitive type. Should you wish to convert the
column so that it is not case sensitive, you can change the type from BLOB to TEXT using either of these ALTER
TABLE statements:

ALTER TABLE news MODIFY article TEXT NOT NULL;
ALTER TABLE news CHANGE article article TEXT NOT NULL;

Prior to MySQL 3.22.16, ALTER TABLE ... MODIFY is unavailable, in which case you can use only ALTER TABLE ...
CHANGE. See Chapter 8 for more information.

4.11 Controlling Case Sensitivity in Pattern Matching
4.11.1 Problem

A pattern match is case sensitive when you don't want it to be, or vice versa.

4.11.2 Solution

Alter the case sensitivity of the strings.

4.11.3 Discussion

By default, LIKE is not case sensitive:

mysql> SELECT name, name LIKE "%i%", name LIKE “"%l1%" FROM metal;
_________________ +

name LIKE "%i%" name LIKE "%I1%" |

I
S
copper |
gold |
iron |
lead |
I

platinum |
I

I

+

silver

|

|

|

|

| mercury
|

|

| tin

o ————— ——— o —

Currently, REGEXP is not case sensitive, either.

mysql> SELECT name, name REGEXP "i", name REGEXP "1* FROM metal;

| name REGEXP "i~
e

| copper |
| gold I
| iron |
| lead |
| mercury |
| platinum |
| silver |
| tin |
+

However, prior to MySQL 3.23.4, REGEXP operations are case sensitive:

mysql> SELECT name, name REGEXP "i", name REGEXP "1* FROM metal;

| name REGEXP "i*
e

| copper |
| gold I
| iron |
| Tead |
| mercury |
| platinum |
| silver |
| tin |
+

Note that the (current) behavior of REGEXP not being case sensitive can lead to some unintuitive results:

mysqgl> SELECT "a®" REGEXP "[[:lower:]]", "a® REGEXP "[[:upper:]1]1°-:

e Ry +
| "a® REGEXP "[[:lower:]]" | "a® REGEXP "[[:upper:]1]1° |
Ry Ry +
I 1] 11
e s +

Both expressions are true because [:lower:] and [:upper:] are equivalent when case sensitivity doesn't matter.

If a pattern match uses different case-sensitive behavior than what you want, control it the same way as for string
comparisons:

o To make a pattern match case sensitive, use a binary string for either operand (for example, by using the
BINARY keyword). The following query shows how the non-binary column name normally is not case
sensitive:

° mysqgl> SELECT name, name LIKE "%i%%", name REGEXP *"i® FROM metal;

° T Ry +

| name LIKE "%i%%" name REGEXP "i" |
S
copper |
gold |
iron |
lead |
mercury |
platinum |
silver |
|

And this query shows how to force name values to be case sensitive using BINARY:

mysql> SELECT name, BINARY name LIKE "%l1%", BINARY name REGEXP "1* FROM metal;

o o S +
| name | BINARY name LIKE "%I%" | BINARY name REGEXP *I* |
Fom e Ry Ry +
copper	0	0
gold	(O	O
iron	0	0
lead	0	0
mercury	0	0
platinum	0	0
silver	0	(O
tin	0	0
o e e +

Using BINARY also has the effect of causing [: lower:] and [:upper:] in regular expressions to act as you
would expect. The second expression in the following query yields a result that really is true only for
uppercase letters:

mysql> SELECT "a" REGEXP "[[:upper:]1", BINARY "a" REGEXP "[[:upper:]11";

e Sy +
| "a® REGEXP "[[:upper:]1]" | BINARY "a® REGEXP “[[:upper:]11" |
Ry Sy +
I 1] 0|
e o +

e A pattern match against a binary column is case sensitive. To make the match not case sensitive, make both
operands the same lettercase. To see how this works, modify the metal table to add a binname column that
is like the name column except that it is VARCHAR BINARY rather than VARCHAR:

° mysql> ALTER TABLE metal ADD binname VARCHAR(20) BINARY;
mysqgl> UPDATE metal SET binname = name;

The first of the following queries shows how the binary column binname normally is case sensitive in
pattern matches, and the second shows how to force it not to be, using UPPER():

mysql> SELECT binname, binname LIKE "%1%", binname REGEXP "1*
-> FROM metal ;

Fo o ——_——— e o +
| binname | binname LIKE *"%l1%® | binname REGEXP "I1* |
Fom e —_—— — e e +
copper	0	0
gold I 0	0	
iron	0	0
lead	0	0
mercury	0	(O
platinum	0] 0	
silver	0	0
tin	0	0
Fo o ——_——— e o +

mysql> SELECT binname, UPPER(binname) LIKE "%I%", UPPER(binname) REGEXP *“1°*
-> FROM metal ;

R TR e e +
| binname | UPPER(binname) LIKE "%I1%" | UPPER(binname) REGEXP "1° |
Fo o ——_——— e R +
| copper | 0] 0]
| gold I 01 01
| iron | 1| 1]
| lead | 0 | O |
| mercury | 0| 0 |
| platinum | 1] 1]
| silver | 1] 1]
| tin | 1] 1]
Fem o ——_——— e e +

4.12 Using FULLTEXT Searches
4.12.1 Problem

You want to search through a lot of text.

4.12.2 Solution
Use a FULLTEXT index.

4.12.3 Discussion

You can use pattern matches to look through any number of rows, but as the amount of text goes up, the match
operation can become quite slow. It's also common to look for the same text in several string columns, which with
pattern matching tends to result in unwieldy queries:

SELECT * from tbl_name
WHERE coll LIKE "pat® OR col2 LIKE "pat® OR col3 LIKE "“pat®

A useful alternative (available as of MySQL 3.23.23) is to use FULLTEXT searching, which is designed for looking
through large amounts of text, and can search multiple columns simultaneously. To use this capability, add a
FULLTEXT index to your table, then use the MATCH operator to look for strings in the indexed column or columns.
FULLTEXT indexing can be used with MyISAM tables, for columns of type CHAR, VARCHAR, Or TEXT.

FULLTEXT searching is best illustrated with a reasonably good-sized body of text. If you don't have a sample
dataset, several repositories of freely available electronic text are available on the Internet. For the examples here,
the one I've chosen is the complete text of the King James Version of the Bible (KJV), which is relatively large and
has the advantage of being nicely structured by book, chapter, and verse. Because of its size, this dataset is not
included with the recipes distribution, but is available separately as the mcb-kjv distribution at the MySQL
Cookbook web site.= (See Appendix A.) The distribution includes a file kjv.txt that contains the verse records.
Some sample records look like this:

Bl The me—kj V distribution is derived from the KJV text available at the Unbound Bible site at Biola University (http://unbound.biola.edu), but has been modified somewhat to
make it easier to use for the recipes in this book. The me—kj V distribution includes notes that describe how it differs from the Biola distribution.

0 Genesis 1 1 1 In the beginning God created the heaven and the earth.
0 Exodus 2 20 13 Thou shalt not kill.
N Luke 42 17 32 Remember Lot"s wife.

Each record contains the following fields:

e Book section. This is either 0 or N, signifying the Old or New Testament.
e Book name and corresponding book number, from 1 to 66.

o Chapter and verse numbers.

o Text of the verse.

To import the records into MySQL, create a table named kjv that looks like this:

CREATE TABLE kjv

(
bsect ENUM("0","N") NOT NULL, # book section (testament)
bname VARCHAR(20) NOT NULL, # book name
bnum TINYINT UNSIGNED NOT NULL, # book number

cnum TINYINT UNSIGNED NOT NULL, # chapter number

vnum TINYINT UNSIGNED NOT NULL, # verse number
vtext TEXT NOT NULL # text of verse
) TYPE = MyISAM;

Then load the kjv.txt file into the table using this statement:

mysqgl> LOAD DATA LOCAL INFILE "kjv.txt®™ INTO TABLE kjv;

You'll notice that the kjv table contains columns for both book names (Genesis, Exodus, ...) and book numbers (1,
2, ...). The names and numbers have a fixed correspondence, and one can be derived from the other—a redundancy
that means the table is not in normal form. It's possible to eliminate the redundancy by storing just the book
numbers (which take less space than the names), and then producing the names when necessary in query results by
joining the numbers to a small mapping table that associates each book number with the corresponding name. But |
want to avoid using joins at this point. Thus, the table includes book names so that search results can be interpreted
more easily, and numbers so that the results can be sorted easily into book order.

After populating the table, prepare it for use in FULLTEXT searching by adding a FULLTEXT index. This can be done
using an ALTER TABLE statement:

' 1t's possible to include the index definition in the initial CREATE TABLE statement, but it's generally faster to create a non-indexed table and then add the index with ALTER
TABLE after populating the table than to load a large dataset into an indexed table.

mysql> ALTER TABLE kjv ADD FULLTEXT (vtext);

To perform a search using the index, use MATCH() to name the indexed column and AGAINST() to specify what
text to look for. For example, to answer the question "How often does the name Mizraim occur?" (you've often
wondered about that, right?), search the vtext column using this query:

mysql> SELECT COUNT(*) from kjv WHERE MATCH(vtext) AGAINST(*Mizraim®);

To find out what those verses are, select the columns you want to see (the example here uses \G so that the results
better fit the page):

mysql> SELECT bname, cnum, vnum, vtext
-> FROM kjv WHERE MATCH(vtext) AGAINST("Mizraim™)\G

*xAhxk 1 row R R o e e e R R e e S e e

bname: Genesis

cnum: 10

vhum: 6
vtext: And the sons of Ham; Cush, and Mizraim, and Phut, and Canaan.

*x 2 row R R o e e e R e R e S e e

bname: Genesis
cnum: 10
vnum: 13

vtext: And Mizraim begat Ludim, and Anamim, and Lehabim, and Naphtuhim,

bname: 1 Chronicles

cnum: 1

vhum: 8
vtext: The sons of Ham; Cush, and Mizraim, Put, and Canaan.

bname: 1 Chronicles

cnum: 1

vnum: 11
vtext: And Mizraim begat Ludim, and Anamim, and Lehabim, and Naphtuhim,

The results come out in book, chapter, and verse number order in this particular instance, but that's actually just
coincidence. By default, FULLTEXT searches compute a relevance ranking and use it for sorting. To make sure a
search result is sorted the way you want, add an explicit ORDER BY clause:

SELECT bname, cnum, vnum, vtext
FROM kjv WHERE MATCH(vtext) AGAINST("search string-®)
ORDER BY bnum, cnum, vnum;

You can include additional criteria to narrow the search further. The following queries perform progressively more
specific searches to find out how often the name Abraham occurs in the entire KJV, the New Testament, the book
of Hebrews, and Chapter 11 of Hebrews:

mysql> SELECT COUNT(*) from kjv WHERE MATCH(vtext) AGAINST("Abraham®);

mysqgl> SELECT COUNT(*) from Kkjv
-> WHERE MATCH(vtext) AGAINST("Abraham®)
-> AND bsect = "N-;

o +
| COUNT(®) |
o +
| 66 |
o +

mysqgl> SELECT COUNT(*) from kjv
-> WHERE MATCH(vtext) AGAINST("Abraham®)

-> AND bname = "Hebrews";
o +
| COUNT(™) |
Fom e +
| 10 |
Fem e +

mysqgl> SELECT COUNT(*) from Kjv
-> WHERE MATCH(vtext) AGAINST("Abraham®)
-> AND bname = "Hebrews®™ AND cnum = 11;

If you expect to use search criteria that include other non-FULLTEXT columns frequently, you can increase the
performance of such queries by adding regular indexes to those columns. For example, to index the book, chapter,
and verse number columns, do this:

mysql> ALTER TABLE kjv ADD INDEX (bnum), ADD INDEX (cnum), ADD INDEX (vnum);

Search strings in FULLTEXT queries can include more than just a single word, and you might suppose that adding
additional words would make a search more specific. But in fact that widens it, because a FULLTEXT search returns
records that contain any of the words. In effect, the query performs an OR search for any of the words. This is
illustrated by the following queries, which identify successively larger numbers of verses as additional search
words are added:

mysqgl> SELECT COUNT(*) from kjv
-> WHERE MATCH(vtext) AGAINST("Abraham®);

o +
| COUNT(*) |
S +
I 216 |
e +

mysqgl> SELECT COUNT(*) from Kkjv
-> WHERE MATCH(vtext) AGAINST("Abraham Sarah®);

S +
| COUNT(*®) |
e +
| 230 |
S +

mysqgl> SELECT COUNT(*) from Kjv
-> WHERE MATCH(vtext) AGAINST("Abraham Sarah Ishmael lIsaac®);

o +
| COUNT(®) |
o +
| 317 |
o +

To perform a search where each word in the search string must be present, see Recipe 4.14.

If you want to use a FULLTEXT search that looks though multiple columns simultaneously, name them all when you
construct the index:

ALTER TABLE tbl_name ADD FULLTEXT (coll, col2, col3);

To issue a search query that uses this index, name those same columns in the MATCH() list:

SELECT ... FROM tbl _name
WHERE MATCH(coll, col2, col3) AGAINST("search string");

4.12.4 See Also
FULLTEXT indexes provide a quick-and-easy way to set up a simple search engine. One way to use this capability is

to provide a web-based interface to the indexed text. The MySQL Cookbook site includes a basic web-based KJV
search page that demonstrates this.

4.13 Using a FULLTEXT Search with Short Words

4.13.1 Problem

FULLTEXT searches for short words return no records.

4.13.2 Solution

Change the indexing engine's minimum word length parameter.

4.13.3 Discussion

In a text like the KJV, certain words have special significance, such as "God" and "sin." However, if you perform

FULLTEXT searches on the kjv table for those words using a MySQL 3.23 server, you'll observe a curious
phenomenon—~both words appear to be missing from the text entirely:

mysql> SELECT COUNT(*) FROM Kjv WHERE MATCH(vtext) AGAINST("God");

o +
| COUNT(®) |
o +
I 01
o +
mysql> SELECT COUNT(*) FROM Kjv WHERE MATCH(vtext) AGAINST("sin");
o +
| COUNT(*) |
o +
I 01
o +

One property of the indexing engine is that it ignores words that are "too common" (that is, words that occur in
more than half the records). This eliminates words such as "the" or "and" from the index, but that's not what is
going on here. You can verify that by counting the total number of records, and by using SQL pattern matches to
count the number of records containing each word:=

1 The use of COUNT () to produce multiple counts from the same set of values is described in Recipe 7.2.

mysqgl> SELECT COUNT(*) AS “total verses”®,
-> COUNT(IF(vtext LIKE "%God%",1,NULL)) AS "verses containing "God"",
-> COUNT(IF(vtext LIKE “"%sin%",1,NULL)) AS “verses containing *'sin™"

-> FROM Kjv;
o e gy +
| total verses | verses containing "God" | verses containing "'sin" |
o e Ny +

I 31102 | 4118 | 1292 |

Neither word is present in more than half the verses, so sheer frequency of occurrence doesn't account for the
failure of a FULLTEXT search to find them. What's really happening is that by default, the indexing engine doesn't
include words less than four characters long. On a MySQL 3.23 server, there's nothing you can do about that (at
least, nothing short of messing around with the MySQL source code and recompiling). As of MySQL 4.0, the
minimum word length is a configurable parameter, which you can change by setting the ¥t_min_word_len server
variable. For example, to tell the indexing engine to include words containing three or more characters, add a set-
variable line to the [mysqld] group of the /etc/my.cnf file (or whatever option file you put server settings in):

[mysqld]
set-variable = ft_min_word_len=3

After making this change and restarting the server, rebuild the FULLTEXT index to take advantage of the new
setting:

mysql> ALTER TABLE kjv DROP INDEX vtext;
mysql> ALTER TABLE Kjv ADD FULLTEXT (vtext);

Then try out the new index to verify that it includes shorter words:

mysql> SELECT COUNT(*) FROM Kjv WHERE MATCH(vtext) AGAINST("God");

That's better!
But why do the MATCH() queries find 3878 and 389 records, whereas the earlier LIKE queries find 4118 and 1292

records? That's because the LIKE patterns match substrings and the FULLTEXT search performed by MATCH()
matches whole words.

4.14 Requiring or Excluding FULLTEXT Search Words
4.14.1 Problem

You want to specifically require or disallow words in a FULLTEXT search.

4.14.2 Solution

Use a Boolean mode search.

4.14.3 Discussion

Normally, FULLTEXT searches return records that contain any of the words in the search string, even if some of
them are missing. For example, the following query finds records that contain either of the names David or
Goliath:

mysql> SELECT COUNT(*) FROM Kkjv
-> WHERE MATCH(vtext) AGAINST("David Goliath®);

o +
| COUNT(®) |
o +
| 934 |
Fom e +

This behavior is undesirable if you want only records that contain both words. One way to do this is to rewrite the
query to look for each word separately and join the conditions with AND:

mysql> SELECT COUNT(*) FROM Kjv
-> WHERE MATCH(vtext) AGAINST("David")
-> AND MATCH(vtext) AGAINST("Goliath");

o +
| COUNT(®) |
o +
| 2 |
o +

As of MySQL 4.0.1, another way to require multiple words is with a Boolean mode search. To do this, precede
each word in the search string with a + character and add IN BOOLEAN MODE after the string:

mysql> SELECT COUNT(*) FROM Kjv
-> WHERE MATCH(vtext) AGAINST("+David +Goliath® IN BOOLEAN MODE)

o +
| COUNT(®) |
o +
| 2
o +

Boolean mode searches also allow you to exclude words. Just precede any disallowed word with a - character. The
following queries select kjv records containing the name David but not Goliath, or vice versa:

mysql> SELECT COUNT(*) FROM Kjv
-> WHERE MATCH(vtext) AGAINST("+David -Goliath® IN BOOLEAN MODE)

mysql> SELECT COUNT(*) FROM Kjv
-> WHERE MATCH(vtext) AGAINST("-David +Goliath® IN BOOLEAN MODE)

o +
| COUNT(®) |
o +
| 4 |
o +

Another useful special character in Boolean searches is *; when appended to a search word, it acts as a wildcard
operator. The following query finds records containing not only whirl, but also words such as whirls, whirleth,
and whirlwind:

mysql> SELECT COUNT(*) FROM Kjv
-> WHERE MATCH(vtext) AGAINST("whirl*" IN BOOLEAN MODE);

o +
| COUNT(®) |
o +
| 28 |
Fom e +

4.15 Performing Phrase Searches with a FULLTEXT Index

4.15.1 Problem

You want to perform a FULLTEXT search for a phrase, that is, for words that occur adjacent to each other and in a
specific order.

4.15.2 Solution

Use the FULLTEXT phrase search capability, or combine a non-phrase FULLTEXT search with regular pattern
matching.

4.15.3 Discussion

To find records that contain a particular phrase, you can't use a simple FULLTEXT search:

mysql> SELECT COUNT(*) FROM kjv
-> WHERE MATCH(vtext) AGAINST("still small voice®);

o +
| COUNT(®) |
o +
| 548 |
o +

The query returns a result, but it's not the result you're looking for. A FULLTEXT search computes a relevance
ranking based on the presence of each word individually, no matter where it occurs within the vtext column, and
the ranking will be nonzero as long as any of the words are present. Consequently, this kind of query tends to find
too many records.

As of MySQL 4.0.2, FULLTEXT searching supports phrase searching in Boolean mode. To use it, just place the
phrase within double quotes.

mysql> SELECT COUNT(*) FROM Kjv
-> WHERE MATCH(vtext) AGAINST(""'still small voice”" IN BOOLEAN MODE);

Prior to 4.0.2, a workaround is necessary. You could use an IN BOOLEAN MODE search to require each word to be
present, but that doesn't really solve the problem, because the words can still occur in any order:

mysql> SELECT COUNT(*) FROM kjv
-> WHERE MATCH(vtext)
-> AGAINST("+still +small +voice® IN BOOLEAN MODE);

Fom e +
| COUNT(™) |
o +
| 31
Fom e +

If you use a SQL pattern match instead, it returns the correct result:

mysqgl> SELECT COUNT(*) FROM kjv
-> WHERE vtext LIKE "%still small voice%";

o +
| COUNT(®) |
o +
| 1]
o +

However, using a SQL pattern match is likely to be slower than a FULLTEXT search. So it seems you have the
unpleasant choice of using a method that is faster but doesn't produce the desired results, or one that works
properly but is slower. Fortunately, those aren't your only options. You can combine both methods in the same

query:

mysqgl> SELECT COUNT(*) FROM Kkjv
-> WHERE MATCH(vtext) AGAINST("still small voice")

-> AND vtext LIKE "%still small voice%";
Fom e —_—— — +
| COUNT(™) |
e +
| 1]
Fo o ——_——— +

What this gains you is the best of both types of matching:

e Using the MATCH() expression, MySQL can perform a FULLTEXT search to produce a set of candidate rows
that contain words in the phrase. This narrows the search considerably.
e Using the SQL pattern test, MySQL can search the candidate rows to produce only those records that have

all the words arranged in the proper order.

This technique will fail if all the words are less than the indexing engine's minimum word length or occur in more
than half the records. In that case, the FULLTEXT search returns no records at all. You can find the records using a

SQL pattern match.

Section 5.1.

Chapter 5. Working with Dates and Times

Introduction

Section 5.2.

Changing MySOL's Date Format

Section 5.3.

Telling MySOL How to Display Dates or Times

Section 5.4.

Determining the Current Date or Time

Section 5.5.

Decomposing Dates and Times Using Formatting Functions

Section 5.6.

Decomposing Dates or Times Using Component-Extraction Functions

Section 5.7.

Decomposing Dates or Times Using String Functions

Section 5.8.

Synthesizing Dates or Times Using Formatting Functions

Section 5.9.

Synthesizing Dates or Times Using Component-Extraction Functions

Section 5.10.

Combining a Date and a Time into a Date-and-Time Value

Section 5.11.

Converting Between Times and Seconds

Section 5.12.

Converting Between Dates and Days

Section 5.13.

Converting Between Date-and-Time Values and Seconds

Section 5.14.

Adding a Temporal Interval to a Time

Section 5.15.

Calculating Intervals Between Times

Section 5.16.

Breaking Down Time Intervals into Components

Section 5.17.

Adding a Temporal Interval to a Date

Section 5.18.

Calculating Intervals Between Dates

Section 5.19.

Canonizing Not-Quite-1SO Date Strings

Section 5.20.

Calculating Ages

Section 5.21.

Shifting Dates by a Known Amount

Section 5.22.

Finding First and Last Days of Months

Section 5.23.

Finding the Length of a Month

Section 5.24.

Calculating One Date from Another by Substring Replacement

Section 5.25.

Finding the Day of the Week for a Date

Section 5.26.

Finding Dates for Days of the Current Week

Section 5.27.

Finding Dates for Weekdays of Other Weeks

Section 5.28.

Performing Leap Year Calculations

Section 5.29.

Treating Dates or Times as Numbers

Section 5.30.

Forcing MySOL to Treat Strings as Temporal VValues

Section 5.31.

Selecting Records Based on Their Temporal Characteristics

Section 5.32.

Using TIMESTAMP Values

Section 5.33.

Recording a Row's Last Modification Time

Section 5.34.

Recording a Row's Creation Time

Section 5.35.

Performing Calculations with TIMESTAMP Values

Section 5.36.

Displaying TIMESTAMP Values in Readable Form

5.1 Introduction

MySQL has several data types for representing dates and times, and several functions for operating on them.
MySQL stores dates and times in specific formats. It's important to understand them to avoid surprises in how
MySQL interprets input data. MySQL also has reformatting functions for producing date and time output in
formats other than the default. This chapter covers the following aspects of working with temporal values in
MySQL.:

« Displaying dates and times.

MySQL displays temporal values using specific formats by default, but you can produce other formats by
calling the appropriate function.

o Determining the current date or time.

MySQL provides functions that return the date and time, which is useful for applications that need to know
these values or need to calculate other temporal values in relation to them.

o Decomposing dates or times into component values.

This section explains how to split date and time values when you need only a piece, such as the month part
or the hour part.

e Synthesizing dates and times from component values.
The complement of splitting apart temporal values is to create them from subparts. This section shows how.

o Converting between dates or times and basic units.
Some date calculations are more easily performed using the number of days or seconds represented by a
date or time value than by using the value itself. MySQL makes it possible to perform several kinds of
conversions between date and time values and more basic units such as days or seconds. These conversions
often are useful for interval calculations (such as time elapsed between two times).

« Date and time arithmetic.
It's possible in MySQL to add temporal intervals to date or time values to produce other dates or times, and
to calculate the interval between dates or times. Time arithmetic is easier than date arithmetic. Times
involve hours, minutes, and seconds—units that always have a fixed duration. Date arithmetic can be
trickier because units such as months and years vary in length.

o Applications for date and time arithmetic.

Using the techniques from the earlier sections, this one shows how to perform age calculation, relative date
computation, date shifting, and leap year calculation.

e Selecting records based on temporal constraints.

The calculations discussed in the preceding sections to produce output values can also be used in WHERE
clauses to specify how to select records using temporal conditions.

e Using TIMESTAMP values.

The TIMESTAMP column type has some special properties that make it convenient for automatically
recording record creation and modification times. This section describes how TIMESTAMP columns behave
and how to use them. It also discusses how to display TIMESTAMP values in more readable formats.

This chapter covers many of MySQL's functions for operating on date and time values, but there are yet others. To
familiarize yourself with the full set, consult the MySQL Reference Manual. The variety of functions available to
you means that it's often possible to perform a given temporal calculation more than one way. | sometimes
illustrate alternative methods for achieving a given result, but many of the problems addressed in this chapter can
be solved in other ways than are shown here. | invite you to experiment to find other solutions. You may find a
method that's more efficient or that you find more readable.

Scripts that implement the recipes discussed in this chapter can be found in the dates directory of the recipes
source distribution. The scripts that create the tables used here are located in the tables directory.

5.1.1 MySQL's Date and Time Formats

MySQL provides DATE and TIME column types for representing date and time values separately, and a DATETIME
type for combined date-and-time values. These values have the following formats:

e DATE values are handled as strings in ccyY-mv-DD format, where CC, YY, MM, and DD represent the century,
year within century, month, and day parts of the date.

e TIME values are represented as strings in hh:mm:ss format, where hh, mm, and ss are the hours, minutes,
and seconds parts of the time. TIME values often can be thought of as time-of-day values, but MySQL
actually treats them as elapsed time. Thus, they may be greater than 23:59:59 or even negative. (The
actual range is -838:59:59 t0 838:59:59.)

e DATETIME values are represented as combined date-and-time strings in CCYY-MM-DD hh-mm:ss format.

e TIMESTAMP values also include date and time parts, but are represented as strings in CCYYMMDDhhmmss
format. This column type also has special properties that are discussed further in Recipe 5.32. More
examples in this chapter use DATETIME values than TIMESTAMP values (which are less readable), but in most
respects, you can treat the two column types the same way.

Many of the examples in this chapter draw on the following tables, which contain columns representing TIME,
DATE, DATETIME, and TIMESTAMP values. (The time_val table has two columns for use in time interval calculation
examples.)

mysql> SELECT t1, t2 FROM time_val;

15:00:00	15:00:00
05:01:30	02:30:20
12:30:20	17:30:45
T T +
mysqgl> SELECT d FROM date_val;

| 1864-02-28 |
| 1900-01-15 |
| 1987-03-05 |
| 1999-12-31 |
| 2000-06-04 |

mysql> SELECT dt FROM datetime_val;

| 1970-01-01 00:00:00 |
| 1987-03-05 12:30:15 |
| 1999-12-31 09:00:00 |
| 2000-06-04 15:45:30 |

mysql> SELECT ts FROM timestamp val;

| 19700101000000 |
| 19870305123015 |
| 19991231090000 |
| 20000604154530 |

5.2 Changing MySQL's Date Format

5.2.1 Problem

You want to change the format that MySQL uses for representing date values.
5.2.2 Solution

You can't. However, you can rewrite input values into the proper format when storing dates, and you can rewrite
them into fairly arbitrary format for display by using the DATE_FORMAT() function.

5.2.3 Discussion

The ccyy-Mm-DD format that MySQL uses for DATE values follows the ISO 8601 standard for representing dates.
This format has the useful property that because the year, month, and day parts have a fixed length and appear left
to right in date strings, dates sort naturally into the proper temporal order.2 However, 1SO format is not used by all
database systems, which can cause problems if you want to move data between different systems. Moreover,
people commonly like to represent dates in other formats such as MM/DD/YY or DD-MM-CCYY. This too can be a
source of trouble, due to mismatches between human expectations of what dates should look like and the way
MySQL actually represents them.

[Chapters Chapter 6 and Chapter 7 discuss ordering and grouping techniques for date-based values.

A frequent question from people who are new to MySQL is, "How do I tell MySQL to store dates in a specific
format such as MM/DD/CCYY?" Sorry, you can't. MySQL always stores dates in 1SO format, a fact that has
implications both for data entry and for result set display:

« For data entry purposes, to store values that are not in ISO format, you normally must rewrite them first. (If
you don't want to rewrite your dates, you'll need to store them as strings, for example, in a CHAR column.
But then you can't operate on them as dates.) In some cases, if your values are close to ISO format,
rewriting may not be necessary. For example, the string values 87-1-7 and 1987-1-7 and the numbers
870107 and 19870107 all are interpreted by MySQL as the date 1987-01-07 when loaded into a DATE
column. The topic of date rewriting for data entry is covered in Chapter 10.

o For display purposes, you can present dates in non-ISO format by rewriting them. MySQL's DATE_FORMAT (
) function can be helpful here. It provides a lot of flexibility for producing whatever format you want (see
Recipe 5.3 and Recipe 5.5). You can also use functions such as YEAR() to extract parts of dates (see
Recipe 5.6). Additional discussion may be found in Chapter 10, which includes a short script that dumps
table contents with the date columns reformatted.

5.3 Telling MySQL How to Display Dates or Times
5.3.1 Problem

You want to display dates or times in a format other than what MySQL uses by default.
5.3.2 Solution

Use the DATE_FORMAT() or TIME_FORMAT() functions to rewrite them.

5.3.3 Discussion

As already noted, MySQL displays dates in ISO format unless you tell it otherwise. To rewrite date values into
other formats, use the DATE_FORMAT() function, which takes two arguments: a DATE, DATETIME, Or TIMESTAMP
value, and a string describing how to display the value. Within the formatting string, you indicate what to display
using special sequences of the form %c, where c specifies which part of the date to display. For example, %Y, %M,
and %d signify the four-digit year, the month name, and the two-digit day of the month. The following query shows
the values in the date_val table, both as MySQL displays them by default and as reformatted with DATE_FORMAT(

):

mysql> SELECT d, DATE_FORMAT(d,"%M %d, %Y") FROM date val;

o Ny +
| d | DATE_FORMAT(d, "%M %d, %Y") |
Fm Sy +
1864-02-28	February 28, 1864
1900-01-15	January 15, 1900
1987-03-05	March 05, 1987
1999-12-31	December 31, 1999
2000-06-04	June 04, 2000
o Sy +

Clearly, DATE_FORMAT() tends to produce rather long column headings, so it's often useful to provide an alias to
make a heading more concise or meaningful:

mysql> SELECT d, DATE_FORMAT(d, %M %d, %Y") AS date FROM date_ val;

+
1864-02-28	February 28, 1864
1900-01-15	January 15, 1900
1987-03-05	March 05, 1987
1999-12-31	December 31, 1999
2000-06-04	June 04, 2000
+

The MySQL Reference Manual provides a complete list of format sequences. Some of the more common ones are
shown in the following table:

Sequence Meaning
%Y Four-digit year
Y%y Two-digit year
%M Complete month name
%b Month name, initial three letters
%m Two-digit month of year (01..12)
%C Month of year (1..12)
%d Two-digit day of month (01..31)
%e Day of month (1..31)
%r 12-hour time with AM or PM suffix
%T 24-hour time
%H Two-digit hour
% Two-digit minute
%s Two-digit second
%% Literal %

The time-related format sequences shown in the table are useful only when you pass DATE_FORMAT() a value that
has both date and time parts (a DATETIME or TIMESTAMP). The following query demonstrates how to display
DATETIME values from the datetime_val table using formats that include the time of day:

mysql> SELECT dt,
-> DATE_FORMAT(dt, "%c/%e/%y %r") AS formatl,
-> DATE_FORMAT(dt, "%M %e, %Y %T") AS format2
-> FROM datetime_val;

o e e +
| dt | formatl | format2 |
Sy Sy - +
| 1970-01-01 00:00:00 | 1/1/70 12:00:00 AM | January 1, 1970 00:00:00 |
| 1987-03-05 12:30:15 | 3/5/87 12:30:15 PM | March 5, 1987 12:30:15 |

|

| 1999-12-31 09:00:00 | 12/31/99 09:00:00 AM | December 31, 1999 09:00:00

| 2000-06-04 15:45:30 | 6/4/00 03:45:30 PM | June 4, 2000 15:45:30 |
e S e +

TIME_FORMAT() is similar to DATE_FORMAT(), but understands only time-related specifiers in the format string.
TIME_FORMAT() works with TIME, DATETIME, or TIMESTAMP values.

mysqgl> SELECT dt,
-> TIME_FORMAT(dt, "%r") AS "12-hour time",
-> TIME_FORMAT(dt, "%T") AS "24-hour time"
-> FROM datetime_val;
Sy o o +

| dt | 12-hour time | 24-hour time |
e B R +
1970-01-01 00:00:00	12:00:00 AM] 00:00:00	
1987-03-05 12:30:15	12:30:15 PM	12:30:15
1999-12-31 09:00:00	09:00:00 AM] 09:00:00	
2000-06-04 15:45:30	03:45:30 PM	15:45:30
e B R +

5.4 Determining the Current Date or Time

5.4.1 Problem

What's the date? What time is it?

5.4.2 Solution

Use the NOW(), CURDATE(), or CURTIME() functions.

5.4.3 Discussion

Some applications need to know the current date or time, such as those that produce a datestamped or timestamped
status display. This kind of information is also useful for date calculations that are performed in relation to the
current date, such as finding the first (or last) day of the month, or determining the date for Wednesday of next

week.

The current date and time are available through three functions. Now() returns both the current date and time.
CURDATE() and CURTIME() return the date and time separately:

mysql> SELECT NOW(), CURDATE(), CURTIME();

e e e +
| NOw() | CURDATE(C) | CURTIME() |
S Ly o +
| 2002-07-15 10:59:30 | 2002-07-15 | 10:59:30 |
o . o +

CURRENT_TIMESTAMP and SYSDATE() are synonyms for NOW(). CURRENT DATE and CURRENT TIME are Synonyms
for CURDATE() and CURTIME().

If you want to obtain subparts of these values (such as the current day of the month or current hour of the day),
read the next few sections.

Sidebar 1. NOW() Is Not a Valid Column
Default Value

Functions such as Now() and CURDATE() are commonly (but mistakenly) used in CREATE TABLE
statements as default values:

mysql> CREATE TABLE testtbl (dt DATETIME DEFAULT NOW());
You have an error in your SQL syntax near “NOW())" at line 1

The intent here is that values of the dt column should be initialized automatically to the date and time
at which records are created. But it won't work; default values in MySQL must be constants. If you
want a column set to the current date and time at record creation, use a TIMESTAMP, which MySQL will
initialize automatically, or use a DATETIME and set the initial value yourself when you create records.

The restriction on non-constant default values will be lifted in the future, during the development of
MySQL 4.1.

5.5 Decomposing Dates and Times Using Formatting Functions
5.5.1 Problem

You want to obtain just a part of a date or a time.

5.5.2 Solution

Use a formatting function such as DATE_FORMAT() or TIME_FORMAT() with a format string that includes a
specifier for the part of the value you want to obtain.

5.5.3 Discussion

MySQL provides several options for decomposing dates or times to obtain their component values. The
DATE_FORMAT() and TIME_FORMAT() functions provide one way to extract individual parts of temporal values:

mysqgl> SELECT dt,
-> DATE_FORMAT(dt, "%Y") AS year,
-> DATE_FORMAT(dt, "%d") AS day,
-> TIME_FORMAT(dt,"%H") AS hour,
-> TIME_FORMAT(dt, "%s") AS second
-> FROM datetime_val;

Ry o —— [T —— f T —— o —— - +
| dt | year | day | hour | second |
S Fom——— Fom——— Fom——— T —— +
1970-01-01 00:00:00	1970	01	00	00
1987-03-05 12:30:15	1987	05	12	15
1999-12-31 09:00:00	1999	31	09	00
2000-06-04 15:45:30	2000	04	15	30
S Fom——— Fom——— Fom——— T —— +

Formatting functions allow you to extract more than one part of a value. For example, to extract the entire date or
time from DATETIME values, do this:

mysqgl> SELECT dt,
-> DATE_FORMAT(dt, "%Y-%m-%d*") AS "date part"®,
-> TIME_FORMAT(dt, "%T") AS "time part”
-> FROM datetime_val;

o o o +
| dt | date part | time part |
S S S +
1970-01-01 00:00:00	1970-01-01	00:00:00
1987-03-05 12:30:15	1987-03-05	12:30:15
1999-12-31 09:00:00	1999-12-31	09:00:00
2000-06-04 15:45:30	2000-06-04	15:45:30
S S S +

One advantage of using formatting functions is that you can display the extracted values in a different form than
that in which they're present in the original values. If you want to present a date differently than in cCCYY-Mv-DD

format or present a time without the seconds part, that's easy to do:

mysqgl> SELECT ts,
-> DATE_FORMAT(ts, "%M %e, %Y") AS “descriptive date”,
-> TIME_FORMAT(ts, "%H:%i1") AS “hours/minutes”
-> FROM timestamp_val;

Ry gy o +
| ts | descriptive date | hours/minutes |
Ry Ny o +
19700101000000	January 1, 1970	00:00
19870305123015	March 5, 1987	12:30
19991231090000	December 31, 1999	09:00
20000604154530	June 4, 2000	15:45
Ry Ny o +
5.5.4 See Also

Recipe 5.6 discusses other functions that may be used to extract single components from dates or times. Recipe 5.7
shows how to use substring functions for component extraction.

5.6 Decomposing Dates or Times Using Component-Extraction
Functions

5.6.1 Problem

You want to obtain just a part of a date or a time.

5.6.2 Solution

Invoke a function specifically intended for extracting part of a temporal value, such as MONTH() or MINUTE().
For obtaining single components of temporal values, these functions are faster than using DATE_FORMAT() for the
equivalent operation.

5.6.3 Discussion

MySQL includes many functions for extracting date or time parts from temporal values. Some of these are shown
in the following list; consult the MySQL Reference Manual for a complete list. The date-related functions work

with DATE, DATETIME, or TIMESTAMP values. The time-related functions work with TIME, DATETIME, or TIMESTAMP
values.

Function Return Value
YEAR() Year of date
MONTH() Month number (1..12)
MONTHNAME() Month name (January..December)
DAYOFMONTH() Day of month (1..31)

Function Return Value
DAYNAME() Day of week (Sunday..Saturday)
DAYOFWEEK() Day of week (1..7 for Sunday..Saturday)
WEEKDAY() Day of week (0..6 for Monday..Sunday)
DAYOFYEAR() Day of year (1..366)
HOUR() Hour of time (0..23)
MINUTE() Minute of time (0..59)
SECOND() Second of time (0..59)

Here's an example:

mysqgl> SELECT dt,
-> YEAR(dt), DAYOFMONTH(dtL),
-> HOUR(dt), SECOND(dt)
-> FROM datetime_val;

S S S S e +
| dt | YEAR(dt) | DAYOFMONTH(dt) | HOUR(dt) | SECOND(dtL) |
o S R S . +
| 1970-01-01 00:00:00 | 1970 | 1] 0| 01
| 1987-03-05 12:30:15 | 1987 | 5 | 12 | 15 |
| 1999-12-31 09:00:00 | 1999 | 31 | 9 | 01
| 2000-06-04 15:45:30 | 2000 | 4| 15 | 30 |
o S R S . +

Functions such as YEAR() or DAYOFMONTH() extract values that have an obvious correspondence to a substring
of date values. Some date extraction functions provide access to values that have no such correspondence. One is
the day-of-year value:

mysql> SELECT d, DAYOFYEAR(d) FROM date val;

o o +
| d | DAYOFYEAR(d) |
e e +
1864-02-28	59
1900-01-15	15
1987-03-05	64
1999-12-31	365
2000-06-04	156
e e +

Another is the day of the week, which can be obtained either by name or by number:

e DAYNAME() returns the complete day name. There is no function for returning the three-character name
abbreviation, but you can get it easily by passing the full name to LEFT():

. mysql> SELECT d, DAYNAME(d), LEFT(DAYNAME(d),3) FROM date val;

° o o gy +

o | d | DAYNAME(d) | LEFT(DAYNAME(d),3) |
o I I S +
o | 1864-02-28 | Sunday | Sun |
° | 1900-01-15 | Monday | Mon |
° | 1987-03-05 | Thursday | Thu |
o | 1999-12-31 | Friday | Fri |
° | 2000-06-04 | Sunday | Sun |
o o Sy +

e To get the day of the week as a number, use DAYOFWEEK() or WEEKDAY ()—Dbut pay attention to the range
of values each function returns. DAYOFWEEK() returns values from 1 to 7, corresponding to Sunday

through Saturday. WEEKDAY () returns values from O to 6, corresponding to Monday through Sunday.
. mysql> SELECT d, DAYNAME(d), DAYOFWEEK(d), WEEKDAY(d) FROM date_val;

° o o Ry Ry o +
. | d | DAYNAME(d) | DAYOFWEEK(d) | WEEKDAY(d) |
° o — o Ty Ry o +
o | 1864-02-28 | Sunday | 1] 6 |
o | 1900-01-15 | Monday | 21 01
° | 1987-03-05 | Thursday | 51 3]
o | 1999-12-31 | Friday | 6 | 4 |
o | 2000-06-04 | Sunday | 1] 6 |
Fmm o o o +

Another way to obtain individual parts of temporal values is to use the EXTRACT() function:

mysqgl> SELECT dt,
-> EXTRACT(DAY FROM dt),
-> EXTRACT(HOUR FROM dt)
-> FROM datetime val;

o Sy Sy Sy o +
| dt | EXTRACT(DAY FROM dt) | EXTRACT(HOUR FROM dt) |
S e S +
| 1970-01-01 00:00:00 | 1] 01
1987-03-05 12:30:15	5 12	
1999-12-31 09:00:00	31	9
2000-06-04 15:45:30	4	15
S e S +

The keyword indicating what to extract should be a unit specifier such as YEAR, MONTH, DAY, HOUR, MINUTE, Or
SECOND. The EXTRACT() function is available as of MySQL 3.23.0.

Sidebar 2. Obtaining the Current Year,
Month, Day, Hour, Minute, or Second

The extraction functions shown in this section can be applied to CURDATE() or Now() to obtain the
current year, month, day, or day of week:

mysql> SELECT CURDATE(), YEAR(CURDATE()) AS year,
-> MONTH(CURDATE()) AS month, MONTHNAME(CURDATE()) AS monthname,
-> DAYOFMONTH(CURDATE()) AS day, DAYNAME(CURDATE()) AS dayname;

Fmm Fom——— o ——_—— o E T —— o +
| CURDATE(C) | year | month | monthname | day | dayname |
o o — o o B — T +
| 2002-07-15 | 2002 | 7 1 Jduly | 15 | Monday |
Fmm Fom——— o ——_—— o E T —— o +

Similarly, you can obtain the current hour, minute, and second by passing CURTIME() or NOw() to a
time-component function:

mysql> SELECT NOW(), HOUR(NOW()) AS hour,
-> MINUTE(NOW()) AS minute, SECOND(NOW()) AS second;

e o —— o —_—— o —_—— +
| NOow() | hour | minute | second |
Ry o —— Fom—— - o —— - +
| 2002-07-15 11:21:12 | 11 | 21 | 12 |
e o —— o —_—— o —_—— +

5.6.4 See Also

The functions discussed in this recipe provide single components of temporal values. If you want to produce a
value consisting of multiple components from a given value, it may be more convenient to use DATE_FORMAT().

See Recipe 5.5.

5.7 Decomposing Dates or Times Using String Functions
5.7.1 Problem

You want to obtain just a part of a date or a time.

5.7.2 Solution

Treat a temporal value as a string and use a function such as LEFT() or MID() to extract substrings
corresponding to the desired part of the value.

5.7.3 Discussion

Recipe 5.5 and Recipe 5.6 discuss how to extract components of temporal values using DATE_FORMAT() or
functions such as YEAR() and MONTH(). If you pass a date or time value to a string function, MySQL treats it as
a string, which means you can extract substrings. Thus, yet another way to extract pieces of temporal values is to
use string functions such as LEFT() or MID().

mysqgl> SELECT dt,
-> LEFT(dt,4) AS year,
-> MID(dt,9,2) AS day,
-> RIGHT(dt,2) AS second
-> FROM datetime val;

TSy S T ——— B T —— - +
| dt | year | day | second |
Fo R R Fom o —— +
1970-01-01 00:00:00	1970	01	00
1987-03-05 12:30:15	1987	05	15
1999-12-31 09:00:00	1999	31	00
2000-06-04 15:45:30	2000	04	30
Fo R R Fom o —— +

You can pull out the entire date or time part from DATET IME values using string-extraction functions such as LEFT(
) Or RIGHT():

mysqgl> SELECT dt,
-> LEFT(dt,10) AS date,
-> RIGHT(dt,8) AS time
-> FROM datetime val;

Sy S S S TR RS S o +
| dt | date | time |
o e Fom +
1970-01-01 00:00:00	1970-01-01	00:00:00
1987-03-05 12:30:15	1987-03-05	12:30:15
1999-12-31 09:00:00	1999-12-31	09:00:00
2000-06-04 15:45:30	2000-06-04	15:45:30
o e Fom +

The same technique also works for TIMESTAMP values. However, because these contain no delimiter characters, the
indexes for LEFT() and RIGHT() are a little different, as are the formats of the output values:

mysqgl> SELECT ts,
-> LEFT(ts,8) AS date,
-> RIGHT(ts,6) AS time
-> FROM timestamp_val;

|

+

19700101000000	19700101	000000
19870305123015	19870305	123015
19991231090000	19991231	090000
20000604154530	20000604	154530
Ly e o +

Decomposition of temporal values with string functions is subject to a couple of constraints that component
extraction and reformatting functions are not bound by:

e To use a substring function such as LEFT(), MID(), or RIGHT(), you must have fixed-length strings.
MySQL might interpret the value 1987-1-1 as 1987-01-01 if you insert it into a DATE column, but using
RIGHT("1987-1-1",2) to extract the day part will not work. If the values have variable-length substrings,

you may be able to use SUBSTRING_INDEX() instead. Alternatively, if your values are close to 1SO format,
you can standardize them using the techniques described in Recipe 5.19.

« String functions cannot be used to obtain values that don't correspond to substrings of a date value, such as
the day of the week or the day of the year.

5.8 Synthesizing Dates or Times Using Formatting Functions
5.8.1 Problem

You want to produce a new date from a given date by replacing parts of its values.

5.8.2 Solution

Use DATE_FORMAT() or TIME_FORMAT() to combine parts of the existing value with parts you want to replace.
5.8.3 Discussion

The complement of splitting apart a date or time value is synthesizing one from its constituent parts. Techniques
for date and time synthesis include using formatting functions (discussed here) and string concatenation (discussed

in Recipe 5.9).

Date synthesis often is performed by beginning with a given date, then keeping parts that you want to use and
replacing the rest. For example, to find the first day of the month in which a date falls, use DATE_FORMAT() to
extract the year and month parts from the date and combine them with a day value of 01:

mysqgl> SELECT d, DATE_FORMAT(d, "%Y-%m-01") FROM date_val;

o S +
| d | DATE_FORMAT(d, "%Y-%m-01") |
e ey +
| 1864-02-28 | 1864-02-01 I
| 1900-01-15 | 1900-01-01 I
| 1987-03-05 | 1987-03-01 I
| 1999-12-31 | 1999-12-01 I
| 2000-06-04 | 2000-06-01 I
e S +

TIME_FORMAT() can be used in a similar way:

mysql> SELECT t1, TIME_FORMAT(tl,"%H:%i:00") FROM time val;
o e +
| t1 | TIME_FORMAT(t1, "%H:%i-00") |
e Sy +
| 15:00:00 | 15:00:00 |
| 05:01:30 | 05:01:00 |
| 12:30:20 | 12:30:00 I
Fom e e +

5.9 Synthesizing Dates or Times Using Component-Extraction
Functions

5.9.1 Problem

You have the parts of a date or time and want to combine them to produce a date or time value.

5.9.2 Solution

Put the parts together using CONCAT().

5.9.3 Discussion

Another way to construct temporal values is to use date-part extraction functions in conjunction with CONCAT().
However, this method often is messier than the DATE_FORMAT() technique discussed in Recipe 5.8—and it

sometimes yields slightly different results:

mysqgl> SELECT d,
-> CONCAT(YEAR(d), "-",MONTH(d),"-01%)
-> FROM date val;

Note that the month values in some of these dates have only a single digit. To ensure that the month has two
digits—as required for 1SO format—use LPAD() to add a leading zero as necessary:

1864-02-28
1900-01-15
1987-03-05
1999-12-31
2000-06-04

____________________________________ +
CONCAT(YEAR(d), "-" ,MONTH(d), "-01") |

1864-2-01 I
1900-1-01 I
1987-3-01 I
1999-12-01 I
2000-6-01 I

mysqgl> SELECT d,
-> CONCAT(YEAR(d), "-",LPAD(MONTH(d),2,"0"),"-01")
-> FROM date val;

1864-02-28
1900-01-15
1987-03-05
1999-12-31
2000-06-04

__ +
CONCAT(YEAR(d), "-",LPAD(MONTH(d),2,*0"),"-01") |

1864-02-01 I
1900-01-01 I
1987-03-01 I
1999-12-01 I
2000-06-01 I

Another way to solve this problem is given in Recipe 5.19.

TIME values can be produced from hours, minutes, and seconds values using methods analogous to those for
creating DATE values. For example, to change a TIME value so that its seconds part is 00, extract the hour and
minute parts, then recombine them using TIME_FORMAT() Or CONCAT():

mysqgl> SELECT t1,
-> TIME_FORMAT(t1, "%H:%i-:00") AS methodl,
-> CONCAT(LPAD(HOUR(t1),2,70"),":",LPAD(MINUTE(t1),2,"0"),":00") AS method2
-> FROM time_val;

S S R +
| t1 | methodl | method2 |
S S S +
15:00:00	15:00:00	15:00:00
05:01:30	05:01:00	05:01:00
12:30:20	12:30:00	12:30:00
S S Fom e +

5.10 Combining a Date and a Time into a Date-and-Time Value
5.10.1 Problem

You want to produce a combined date-and-time value from separate date and time values.

5.10.2 Solution

Concatenate them with a space in between.

5.10.3 Discussion

Combining a date value and a time value to produce a date-and-time value is just a matter of concatenating them
with a space in between:

mysql> SET @d "2002-02-28";
mysql> SET @t "13:10:05";
mysql> SELECT @d, @t, CONCAT(@d," ",@t);

o o Sy +
| @d | ot | CONCAT(@d," *",@t) |
o o e +
| 2002-02-28 | 13:10:05 | 2002-02-28 13:10:05 |
o o o +

5.11 Converting Between Times and Seconds
5.11.1 Problem

You have a time value but you want a value in seconds, or vice versa.

5.11.2 Solution

TIME values are specialized representations of a simpler unit—seconds—and you can convert back and forth from
one to the other using TIME_TO_SEC() and SEC_TO_TIME().

5.11.3 Discussion

TIME_TO_SEC() converts a TIME value to the equivalent number of seconds, and SEC_TO_TIME() does the
opposite. The following query demonstrates a simple conversion in both directions:

mysql> SELECT t1,
-> TIME_TO_SEC(tl) AS "TIME to seconds”,
-> SEC_TO _TIME(TIME_TO_SEC(tl1l)) AS "TIME to seconds to TIME*®
-> FROM time_val;

o o Ry +
| t1 | TIME to seconds | TIME to seconds to TIME |
o o Ry +
15:00:00	54000	15:00:00
05:01:30	18090	05:01:30
12:30:20	45020	12:30:20
o o Ny +

To express time values as minutes, hours, or days, perform the appropriate divisions:

mysql> SELECT t1,
-> TIME_TO_SEC(tl) AS "seconds”,
-> TIME_TO_SEC(t1)/60 AS "minutes”,
-> TIME_TO_SEC(tl1)/(60*60) AS “hours”,
-> TIME_TO_SEC(t1)/(24*60*60) AS "days~
-> FROM time_val;

TS . o TR T B T —— +
| t1 | seconds | minutes | hours | days |
Fom e —_—— — Fom e —_——_—— Fom e ——_—— Fom—— - Fem—— +
15:00:00	54000	900.00	15.00	0.62
05:01:30	18090	301.50	5.03	0.21
12:30:20	45020	750.33	12.51	0.52
e — —— Fom——_—— — Fom——_— Foe o —— +

Use FLOOR() if you prefer integer values to floating-point values:

mysqgl> SELECT t1,
-> TIME_TO_SEC(tl) AS "seconds”,
-> FLOOR(TIME_TO_SEC(t1)/60) AS "minutes”®,
-> FLOOR(TIME_TO_SEC(t1)/(60*60)) AS "hours”,
-> FLOOR(TIME_TO_SEC(t1)/(24*60*60)) AS "days"
-> FROM time_val;

TS . o TR T B T —— +
| t1 | seconds | minutes | hours | days |
Fom e —_—— — Fom e —_——_—— Fom e ——_—— Fom—— - Fem—— +
15:00:00	54000	900	15	0
05:01:30	18090	301	5] 0	
12:30:20	45020	750	12	(O
Fom o ——_——— Fom——_— Fom——_— Fo o —— +

If you pass TIME_TO_SEC() a date-and-time value, it extracts the time part and discards the date. This provides
yet another means of extracting times from DATETIME and TIMESTAMP values (in addition to those already
discussed earlier in the chapter):

mysqgl> SELECT dt,
-> TIME_TO_SEC(dt) AS “time part in seconds”,
-> SEC_TO _TIME(TIME_TO_SEC(dt)) AS "time part as TIME"
-> FROM datetime_val;

e e gy +
| dt | time part in seconds | time part as TIME |
Ry Ry o +
1970-01-01 00:00:00	0	00:00:00
1987-03-05 12:30:15	45015	12:30:15
1999-12-31 09:00:00	32400	09:00:00
2000-06-04 15:45:30	56730	15:45:30
Ry Ry o +

mysql> SELECT ts,
-> TIME_TO_SEC(ts) AS “time part in seconds”,
-> SEC_TO_TIME(TIME_TO_SEC(ts)) AS “time part as TIME"
-> FROM timestamp_val;

o o Ty +
| ts | time part in seconds | time part as TIME |
e ey Ty +
19700101000000	0	00:00:00
19870305123015	45015	12:30:15
19991231090000	32400	09:00:00
20000604154530	56730	15:45:30
e ey Ty +

5.12 Converting Between Dates and Days
5.12.1 Problem

You have a date but want a value in days, or vice versa.

5.12.2 Solution

DATE values can be converted to and from days with T0_DAYS() and FROM_DAYS(). Date-and-time values also
can be converted to days if you're willing to suffer loss of the time part.

5.12.3 Discussion

TO_DAYS() converts a date to the corresponding number of days, and FROM_DAYS() does the opposite:

mysql> SELECT d,
-> TO_DAYS(d) AS "DATE to days”,
-> FROM_DAYS(TO_DAYS(d)) AS "DATE to days to DATE"
-> FROM date val;

o o Ry +
| d | DATE to days | DATE to days to DATE |
TR . S s +
1864-02-28	680870	1864-02-28
1900-01-15	693975	1900-01-15
1987-03-05	725800	1987-03-05
1999-12-31	730484	1999-12-31
2000-06-04	730640	2000-06-04
TR - Fo o o +

When using TO_DAYS(), it's probably best to stick to the advice of the MySQL Reference Manual and avoid DATE
values that occur before the beginning of the Gregorian calendar (1582). Changes in the lengths of calendar years
and months prior to that date make it difficult to speak meaningfully of what the value of "day 0" might be. This
differs from TIME_TO_SEC(), where the correspondence between a TIME value and the resulting seconds value is
obvious and has a meaningful reference point of 0 seconds.

If you pass TO_DAYS() a date-and-time value, it extracts the date part and discards the time. This provides another
means of extracting dates from DATETIME and TIMESTAMP values:

mysqgl> SELECT dt,
-> TO_DAYS(dt) AS "date part in days”,
-> FROM_DAYS(TO_DAYS(dt)) AS "date part as DATE"®
-> FROM datetime_val;

e gy Ry +
| dt | date part in days | date part as DATE |
e gy o +
1970-01-01 00:00:00	719528	1970-01-01
1987-03-05 12:30:15	725800	1987-03-05
1999-12-31 09:00:00	730484	1999-12-31
2000-06-04 15:45:30	730640	2000-06-04
Ry o o +

mysqgl> SELECT ts,
-> TO_DAYS(ts) AS "date part in days”®,
-> FROM_DAYS(TO_DAYS(ts)) AS "date part as DATE"
-> FROM timestamp_val;

o o e +
| ts | date part in days | date part as DATE |
Fo R e +
19700101000000	719528	1970-01-01
19870305123015	725800	1987-03-05
19991231090000	730484	1999-12-31
20000604154530	730640	2000-06-04
Fo R e +

5.13 Converting Between Date-and-Time Values and Seconds
5.13.1 Problem

You have a date-and-time value but want a value in seconds, or vice versa.

5.13.2 Solution

The UNIX_TIMESTAMP() and FROM_UNIXTIME() functions convert DATETIME or TIMESTAMP values in the range
from 1970 through approximately 2037 to and from the number of seconds elapsed since the beginning of 1970.
The conversion to seconds offers higher precision for date-and-time values than a conversion to days, at the cost of
a more limited range of values for which the conversion may be performed.

5.13.3 Discussion

When working with date-and-time values, you can use TO_DAYS() and FROM_DAYS() to convert date values to

days and back to dates, as shown in the previous section. For values that occur no earlier than 1970-01-01
00:00:00 GMT and no later than approximately 2037, it's possible to achieve higher precision by converting to

and from seconds.2 UNIX_TIMESTAMP() converts date-and-time values in this range to the number of seconds
elapsed since the beginning of 1970, and FROM_UNIXTIME() does the opposite:

21 t's difficult to give a precise upper bound on the range of values because it varies somewhat between systems.

mysqgl> SELECT dt,
-> UNIX_TIMESTAMP(dt) AS seconds,
-> FROM_UNIXTIME(UNIX_TIMESTAMP(dt)) AS timestamp
-> FROM datetime_val;

e N Sy +
| dt | seconds | timestamp |
Ry o o +
1970-01-01 00:00:00	21600	1970-01-01 00:00:00
1987-03-05 12:30:15	541967415	1987-03-05 12:30:15
1999-12-31 09:00:00	946652400	1999-12-31 09:00:00
2000-06-04 15:45:30	960151530	2000-06-04 15:45:30
Ry o o +

The relationship between the "UNIX" in the function names and the fact that the applicable range of values begins
with 1970 is that 1970-01-01 00:00:00 GMT marks the "Unix epoch.” The epoch is time zero, or the reference
point for measuring time in Unix systems.2 That being so, you may find it curious that the preceding example
shows a UNIX_TIMESTAMP() value of 21600 for the first value in the datetime_val table. What's going on? Why
isn't it 0? The apparent discrepancy is due to the fact that the MySQL server converts values to its own time zone
when displaying them. My server is in the U.S. Central Time zone, which is six hours (that is, 21600 seconds) west
of GMT.

£11970-01-01 00:00:00 GMT also happens to be the epoch as Java measures time.

UNIX_TIMESTAMP() can convert DATE values to seconds, too. It treats such values as having an implicit time-of-
day part of 00:00:00:

mysql> SELECT CURDATE(), FROM_UNIXTIME(UNIX_TIMESTAMP(CURDATE()));:

e o +
| CURDATE() | FROM_UNIXTIME(UNIX_TIMESTAMP(CURDATE())) |
o e +

| 2002-07-15 | 2002-07-15 00:00:00 |
o o +

5.14 Adding a Temporal Interval to a Time
5.14.1 Problem

You want to add a given number of seconds to a time, or to add two time values.
5.14.2 Solution

Use TIME_TO_SEC() as necessary to make sure all values are represented in seconds, then add them. The result
will be in seconds; use SEC_TO_TIME() if you want to convert back to a time value.

5.14.3 Discussion

The primary tools for performing time arithmetic are TIME_TO_SEC() and SEC_TO_TIME(), which convert
between TIME values and seconds. To add an interval value in seconds to a TIME value, convert the TIME to
seconds so that both values are represented in the same units, add the values together, and convert the result back
to a TIME. For example, two hours is 7200 seconds (2*60*60), so the following query adds two hours to each t1
value in the time_val table:

mysql> SELECT t1,
-> SEC TO TIME(TIME_TO_SEC(tl) + 7200) AS "tl1 plus 2 hours”
-> FROM time_val;

S S — OSSR E +

| t1 | t1 plus 2 hours |
Fem e —_—— — Fem +

15:00:00	17:00:00	
]	05:01:30	07:01:30
12:30:20	14:30:20	
o o +

If the interval itself is expressed as a TIME, it too should be converted to seconds before adding the values together.
The following example calculates the sum of the two TIME values in the time_val table:

mysql> SELECT t1, t2,
-> SEC_TO TIME(TIME_TO_SEC(tl1l) + TIME_TO SEC(t2)) AS "tl1 + t2*
-> FROM time_val;

15:00:00	15:00:00	30:00:00
05:01:30	02:30:20	07:31:50
12:30:20	17:30:45	30:01:05
S S S +

It's important to recognize that MySQL TIME values really represent elapsed time, not time of day, so they don't
reset to 0 after reaching 24 hours. You can see this in the first and third output rows from the previous query. To
produce time-of-day values, enforce a 24-hour wraparound using a modulo operation before converting the
seconds value back to a TIME value. The number of seconds in a day is 24*60*60, or 86400, so to convert any

seconds value s to lie within a 24-hour range, use the MoD() function or the % modulo operator like this:

MOD(s , 86400)
s % 86400

The two expressions are equivalent. Applying the first of them to the time calculations from the preceding example
produces the following result:

mysql> SELECT t1, t2,
-> SEC_TO_TIME(MOD(TIME_TO_SEC(tl) + TIME_TO_SEC(t2), 86400)) AS "tl1 + t2*
-> FROM time_val;

o o —_—— T +
| t1 | ©2 | t1 + 12 |
o oo oo +
15:00:00	15:00:00	06:00:00
05:01:30	02:30:20	07:31:50
12:30:20	17:30:45	06:01:05
o oo oo +
- The allowable range of TIME values is -838:59:59 to 838:59:59 (that is -3020399 to
as | 3020399 seconds). When you add times together, you can easily produce a result that lies
4" outside this range. If you try to store such a value into a TIME column, MySQL clips it to

the nearest endpoint of the range.

5.15 Calculating Intervals Between Times
5.15.1 Problem

You want to know the amount of time elapsed between two times.

5.15.2 Solution

Convert the times to seconds with TIME_TO_SEC() and take the difference. For a difference represented as a time,
convert the result back the other way using SEC_TO_TIME().

5.15.3 Discussion

Calculating intervals between times is similar to adding times together, except that you compute a difference rather
than a sum. For example, to calculate intervals in seconds between pairs of t1 and t2 values, convert the values in
the time_val table to seconds using TIME_TO_SEC(), then take the difference. To express the resulting difference
as a TIME value, pass it to SEC_TO_TIME(). The following query shows intervals both ways:

mysql> SELECT t1, t2,
-> TIME_TO_SEC(t2) - TIME_TO_SEC(tl) AS T"interval in seconds”,
-> SEC_TO_TIME(TIME_TO_SEC(t2) - TIME_TO_SEC(tl)) AS "interval as TIME"
-> FROM time_val;

15:00:00	15:00:00	0	00:00:00
05:01:30	02:30:20	-9070	-02:31:10
12:30:20	17:30:45	18025	05:00:25
o o e o +

Note that intervals may be negative, as is the case when t1 occurs later than t2.

5.16 Breaking Down Time Intervals into Components
5.16.1 Problem

You have a time interval represented as a time, but you want the interval in terms of its components.
5.16.2 Solution

Decompose the interval with the HOUR(), MINUTE(), and SECOND() functions. If the calculation is complex in
SQL and you're using the interval within a program, it may be easier to use your programming language to perform
the equivalent math.

5.16.3 Discussion

To express a time interval in terms of its constituent hours, minutes, and seconds values, calculate time interval
subparts in SQL using the HOUR(), MINUTE(), and SECOND() functions. (Don't forget that if your intervals may
be negative, you need to take that into account.) For example, to determine the components of the intervals
between the t1 and t2 columns in the time_val table, the following SQL statement does the trick:

mysql> SELECT t1, t2,
-> SEC_TO_TIME(TIME_TO_SEC(t2) - TIME_TO_SEC(tl1)) AS "interval as TIME",
-> IF(SEC_TO TIME(TIME_TO_SEC(t2) >= TIME_TO SEC(tl)),"+","-") AS sign,
-> HOUR(SEC_TO_TIME(TIME_TO_SEC(t2) - TIME_TO_SEC(tl1l))) AS hour,
-> MINUTE(SEC_TO_TIME(TIME_TO_SEC(t2) - TIME_TO_SEC(tl))) AS minute,
-> SECOND(SEC_TO _TIME(TIME_TO_SEC(t2) - TIME_TO_SEC(t1))) AS second
-> FROM time_val;

o o Ny B — B o o +
| t1 | t2 | interval as TIME | sign | hour | minute | second |
o o o f T —— E T —— o ——_— - o —— - +
| 15:00:00 | 15:00:00 | 00:00:00 | + | 0 | 0 | 0]
| 05:01:30 | 02:30:20 | -02:31:10 | - | 21 31 | 10 |
| 12:30:20 | 17:30:45 | 05:00:25 | + | 5] 0 | 25 |
o o Ny B — B o o +

But that's fairly messy, and attempting to do the same thing using division and modulo operations is even messier.
If you happen to be issuing an interval-calculation query from within a program, it's possible to avoid most of the
clutter. Use SQL to compute just the intervals in seconds, then use your API language to break down each interval
into its components. The formulas should account for negative values and produce integer values for each
component. Here's an example function time_components() written in Python that takes an interval value in
seconds and returns a four-element tuple containing the sign of the value, followed by the hour, minute, and second
parts:

def time_components (time_in_secs):

if time_in_secs < O:

sign = "-"

time_in_secs = -time_In_secs
else:

sign =
hours = int (time_in_secs / 3600)
minutes = int ((time_in_secs / 60)) % 60
seconds = time_in_secs % 60
return (sign, hours, minutes, seconds)

You might use time_components() within a program like this:

query = "SELECT t1, t2, TIME_TO_SEC(t2) - TIME_TO_SEC(tl) FROM time_val"
cursor = conn.cursor ()
cursor.execute (query)
for (tl, t2, interval) in cursor.fetchall ():

(sign, hours, minutes, seconds) = time_components (interval)

print "tl = %s, t2 = %s, interval = %s%d h, %d m, %d s \

% (tl, t2, sign, hours, minutes, seconds)

cursor.close ()

The program produces the following output:

tl = 15:00:00, t2 = 15:00:00, interval = 0 h, Om, O s
tl = 05:01:30, t2 = 02:30:20, interval = -2 h, 31 m, 10 s
tl = 12:30:20, t2 = 17:30:45, interval =5 h, Om, 25 s

The preceding example illustrates a more general principle that's often useful when issuing queries from a
program: it may be easier to deal with a calculation that is complex to express in SQL by using a simpler query and
postprocessing the results using your API language.

5.17 Adding a Temporal Interval to a Date
5.17.1 Problem

You want to add time to a date or date-and-time value.

5.17.2 Solution

Use DATE_ADD() and DATE_SUB(), functions intended specifically for date arithmetic. You can also use
TO_DAYS() and FROM_DAYS(), or UNIX_TIMESTAMP() and FROM_UNIXTIME().

5.17.3 Discussion
Date arithmetic is less straightforward than time arithmetic due to the varying length of months and years, so

MySQL provides special functions DATE_ADD() and DATE_SUB() for adding or subtracting intervals to or from
dates. Each function takes a date value d and an interval, expressed using the following syntax:

“DATE_ADD() and DATE_SUB() were introduced in MySQL 3.22.4, as were their synonyms, ADDDATE() and SUBDATE().

DATE_ADD(d, INTERVAL val unit)
DATE_SUB(d, INTERVAL val unit)

Here, unit is the interval unit and val is an expression indicating the number of units. Some of the common unit
specifiers are YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND. (Check the MySQL Reference Manual for the full
list.) Note that all these units are specified in singular form, not plural.

Using DATE_ADD() or DATE_SUB(), you can perform date arithmetic operations such as the following:

Determine the date three days from today:
mysql> SELECT CURDATE(), DATE_ADD(CURDATE(),INTERVAL 3 DAY);

. e ey +
. | CURDATE() | DATE_ADD(CURDATE(), INTERVAL 3 DAY) |
° e gy Sy S +
. | 2002-07-15 | 2002-07-18 I
o e +

« Find the date a week ago (the query here uses 7 DAY to represent an interval of a week because there is no

WEEK interval unit):
. mysql> SELECT CURDATE(), DATE_SUB(CURDATE(), INTERVAL 7 DAY);

° e gy Sy S +
. | CURDATE() | DATE_SUB(CURDATE(), INTERVAL 7 DAY) |
o e Sy +
. | 2002-07-15 | 2002-07-08 |
ey i +

e For questions where you need to know both the date and the time, begin with a DATETIME or TIMESTAMP
value. To answer the question, "what time will it be in 60 hours?," do this:
. mysql> SELECT NOW(), DATE_ADD(NOW(), INTERVAL 60 HOUR);

° S gy +
. | Now() | DATE_ADD(NOW(), INTERVAL 60 HOUR) |
o gy ey +
. | 2002-07-15 11:31:17 | 2002-07-17 23:31:17 |
S S +

o Some interval specifiers comprise both date and time parts. The following adds 14 and a half hours to the
current date and time:

mysql> SELECT NOW(), DATE_ADD(NOW(), INTERVAL "14:30" HOUR_MINUTE);
° Sy S +

| Now() | DATE_ADD(NOW(), INTERVAL "14:30" HOUR_MINUTE) |
. Sy ey +

° | 2002-07-15 11:31:24 | 2002-07-16 02:01:24 |
o - +

Similarly, adding 3 days and 4 hours produces this result:

mysql> SELECT NOW(), DATE_ADD(NOW(), INTERVAL "3 4" DAY_HOUR);

S S +
| Now() | DATE_ADD(NOW(), INTERVAL "3 4° DAY_HOUR) |
e ey +
| 2002-07-15 11:31:30 | 2002-07-18 15:31:30 |
S o +

DATE_ADD() and DATE_SUB() are interchangeable because one is the same as the other with the sign of the
interval value flipped. For example, these two calls are equivalent for any date value d:

DATE_ADD(d, INTERVAL -3 MONTH)
DATE_SUB(d, INTERVAL 3 MONTH)

As of MySQL 3.23.4, you can also use the + and - operators to perform date interval addition and subtraction:

mysql> SELECT CURDATE(), CURDATE() + INTERVAL 1 YEAR;

o S +

| CURDATE() | CURDATE() + INTERVAL 1 YEAR |
o S +

| 2002-07-15 | 2003-07-15 |
e S +
mysql> SELECT NOW(), NOW() - INTERVAL 24 HOUR;
S ey +
| Now() | NOW() - INTERVAL 24 HOUR |
e gy +
| 2002-07-15 11:31:48 | 2002-07-14 11:31:48 |
S ey +

Another way to add intervals to date or date-and-time values is by using functions that convert to and from basic
units. For example, to shift a date forward or backward a week (seven days), use TO_DAYS() and FROM_DAYS():

mysqgl> SET @d = "2002-01-01°%;

mysqgl> SELECT @d AS date,
-> FROM_DAYS(TO_DAYS(@d) + 7) AS "date + 1 week",
-> FROM_DAYS(TO_DAYS(@d) - 7) AS "date - 1 week";

| 2002-01-01 | 2002-01-08 | 2001-12-25 I
o Sy e +

TO_DAYS() also can convert DATETIME or TIMESTAMP values to days, if you don't mind having it chop off the time
part:

mysgl> SET @dt = "2002-01-01 12:30:45";

mysqgl> SELECT @dt AS datetime,
-> FROM_DAYS(TO_DAYS(@dt) + 7) AS "datetime + 1 week",
-> FROM_DAYS(TO_DAYS(@dt) - 7) AS "datetime - 1 week”;

e Ry Ry +
| datetime | datetime + 1 week | datetime - 1 week |
Ry o Ty +
| 2002-01-01 12:30:45 | 2002-01-08 | 2001-12-25 |
Ry e Ty +

To preserve accuracy with DATETIME or TIMESTAMP values, use UNIX_TIMESTAMP() and FROM_UNIXTIME()
instead. The following query shifts a DATET IME value forward and backward by an hour (3600 seconds):

mysql> SET @dt = ®"2002-01-01 09:00:00%;

mysql> SELECT @dt AS datetime,
-> FROM_UNIXTIME(UNIX_TIMESTAMP(@dt) + 3600) AS "datetime + 1 hour-,
-> FROM_UNIXTIME(UNIX_TIMESTAMP(@dt) - 3600) AS "datetime - 1 hour";

o e e +
| datetime | datetime + 1 hour | datetime - 1 hour |
Fo e e +
| 2002-01-01 09:00:00 | 2002-01-01 10:00:00 | 2002-01-01 08:00:00 |
Ty SRS S S TSy Ry Sy e +

The last technique requires that both your initial value and the resulting value like in the allowable range for
TIMESTAMP values (1970 to sometime in the year 2037).

5.18 Calculating Intervals Between Dates

5.18.1 Problem

You want to know how long it is between dates.

5.18.2 Solution

Convert both dates to basic units and take the difference between the resulting values.
5.18.3 Discussion

The general procedure for calculating an interval between dates is to convert both dates to a common unit in
relation to a given reference point, then take the difference. The range of values you're working with determines
which conversions are available. DATE, DATETIME, or TIMESTAMP values dating back to 1970-01-01 00:00:00
GMT—the date of the Unix epoch—can be converted to seconds elapsed since the epoch. If both dates lie within
that range, you can calculate intervals to an accuracy of one second. Older dates from the beginning of the
Gregorian calendar (1582) on can be converted to day values and used to compute intervals in days. Dates that
begin earlier than either of these reference points present more of a problem. In such cases, you may find that your
programming language offers computations that are not available or are difficult to perform in SQL. If so, consider

processing date values directly from within your API language. (For example, the Date::Calc and Date::Manip
modules are available from the CPAN for use within Perl scripts.)

To calculate an interval in days between date or date-and-time values, convert them to days using TO_DAYS(),
then take the difference:

mysql> SELECT TO_DAYS("1884-01-01") - TO_DAYS("1883-06-05") AS days;

For an interval in weeks, do the same thing and divide the result by seven:

mysql> SELECT (TO_DAYS("1884-01-01") - TO_DAYS("1883-06-05")) / 7 AS weeks;

You cannot convert days to months or years by simple division, because those units vary in length. Calculations to
yield date intervals expressed in those units are covered in Recipe 5.20.

Sidebar 3. Do You Want an Interval or a
Span?

Taking a difference between dates gives you the interval from one date to the next. If you want to know
the range covered by the two dates, you must add a unit. For example, it's three days from 2002-01-01

to 2002-01-04, but together they span a range of four days. If you're not getting the results you expect

from an interval calculation, consider whether you need to use an "off-by-one" correction.

For values occurring from the beginning of 1970 on, you can determine intervals to a resolution in seconds using
the UNIX_TIMESTAMP() function. For example, the number of seconds between dates that lie two weeks apart can
be computed like this:

mysqgl> SET @dtl = "1984-01-01 09:00:00";
mysqgl> SET @dt2 = "1984-01-15 09:00:00";
mysqgl> SELECT UNIX_TIMESTAMP(@dt2) - UNIX_TIMESTAMP(@dtl) AS seconds;

To convert the interval in seconds to other units, perform the appropriate arithmetic operation. Seconds are easily
converted to minutes, hours, days, or weeks:

mysql> SET @interval = UNIX_TIMESTAMP(@dt2) - UNIX_TIMESTAMP(@dtl);
mysql> SELECT @interval AS seconds,

-> @interval /7 60 AS minutes,

-> @interval /7 (60 * 60) AS hours,

-> @interval /7 (24 * 60 * 60) AS days,

-> @interval /7 (7 * 24 * 60 * 60) AS weeks;

Fom e Fom e o Fom——_—— o +
| seconds | minutes | hours | days | weeks |
o o o o T —— +
| 1209600 | 20160 | 336 | 14 | 2]
Fom e — Fom e — o ——_—— o —— o ——_—— +

For values that occur outside the range from 1970 to 2037, you can use an interval calculation method that is more
general (but messier):

o Take the difference in days between the date parts of the values and multiply by 24*60*60 to convert to
seconds.
o Offset the result by the difference in seconds between the time parts of the values.

Here's an example, using two date-and-time values that lie a week apart:

mysql> SET @dtl "1800-02-14 07:30:00";
mysql> SET @dt2 "1800-02-21 07:30:00%;
mysgl> SET @interval =
-> ((TO_DAYS(@dt2) - TO_DAYS(@dtl)) * 24*60*60)
-> + TIME_TO_SEC(@dt2) - TIME_TO_SEC(@dtl);
mysqgl> SELECT @interval AS seconds;

To convert the interval to a TIME value, pass it to SEC_TO_TIME():

mysql> SELECT SEC_TO_TIME(@interval) AS TIME;

o +
| TIME I
e +
| 168:00:00 |
o +

To convert the interval from seconds to other units, perform the appropriate division:

mysqgl> SELECT @interval AS seconds,
-> @interval /7 60 AS minutes,
-> @interval /7 (60 * 60) AS hours,
-> @interval /7 (24 * 60 * 60) AS days,

-> @interval /7 (7 * 24 * 60 * 60) AS weeks;

Fom e — Fom e — o ——_—— o —— o ——_—— +
| seconds | minutes | hours | days | weeks |
Fom e Fom e o B T o +
| 604800 | 10080 | 168 | 7 1]
o o S S S o +

I cheated here by choosing an interval that produces nice integer values for all the division operations. In general,
you'll have a fractional part, in which case you may find it helpful to use FLOOR(expr) to chop off the fractional
part and produce an integer.

5.19 Canonizing Not-Quite-ISO Date Strings

5.19.1 Problem

A date is in a format that's close to but not exactly 1SO format.

5.19.2 Solution

Canonize the date by passing it to a function that always returns an 1ISO-format date result.

5.19.3 Discussion

Earlier in the chapter (Recipe 5.9), we ran into the problem that synthesizing dates with CONCAT() may produce

values that are not quite in 1SO format. For example, the following query produces first-of-month values in which
the month part may have only a single digit:

mysql> SELECT d, CONCAT(YEAR(d),"-",MONTH(d),"-01") FROM date val;

o gy +
| d | CONCAT(YEAR(d),"-",MONTH(d),"-01") |
e o +
| 1864-02-28 | 1864-2-01 I
| 1900-01-15 | 1900-1-01 I
| 1987-03-05 | 1987-3-01 I
| 1999-12-31 | 1999-12-01 I
| 2000-06-04 | 2000-6-01 I
o S +

In that section, a technique using LPAD() was shown for making sure the month values have two digits.

mysql> SELECT d, CONCAT(YEAR(d),"-",LPAD(MONTH(d),2,%0"),"-01") FROM date_val;

e Sy S +
| d | CONCAT(YEAR(d),"-",LPAD(MONTH(d),2,"0"),"-01") |
o o +
| 1864-02-28 | 1864-02-01 |
| 1900-01-15 | 1900-01-01 I
| 1987-03-05 | 1987-03-01 I
| 1999-12-31 | 1999-12-01 I
| 2000-06-04 | 2000-06-01 I
e Sy +

Another way to standardize a close-to-1SO date is to use it in an expression that produces an ISO date result. For a
date d, any of the following expressions will do:

DATE_ADD(d, INTERVAL O DAY)
d + INTERVAL O DAY
FROM_DAYS(TO_DAYS(d))

For example, the non-1SO results from the CONCAT() operation can be converted into 1SO format three different

ways as follows:
mysqgl> SELECT d,

CONCAT(YEAR(d), "-" ,MONTH(d), "-01") AS "non-1S0",
DATE_ADD(CONCAT(YEAR(d), "-" ,MONTH(d), "-01"), INTERVAL O DAY) AS method1l,
CONCAT(YEAR(d), "-" ,MONTH(d),"-01") + INTERVAL O DAY AS method2,
FROM_DAYS(TO_DAYS(CONCAT(YEAR(d), *-",MONTH(d), "-01"))) AS method3

FROM date_val;

Fmm o o o o +
| d | non-1S0O | methodl | method2 | method3 |
o o o o o +
1864-02-28	1864-2-01	1864-02-01	1864-02-01	1864-02-01
1900-01-15	1900-1-01	1900-01-01	1900-01-01	1900-01-01
1987-03-05	1987-3-01	1987-03-01	1987-03-01	1987-03-01
1999-12-31	1999-12-01	1999-12-01	1999-12-01	1999-12-01
2000-06-04	2000-6-01	2000-06-01	2000-06-01	2000-06-01
o o o o o +

5.20 Calculating Ages
5.20.1 Problem

You want to know how old someone is.

5.20.2 Solution

This is a problem of computing the interval between dates, but with a twist. For an age in years, it's necessary to
account for the relative placement of the start and end dates within the calendar year. For an age in months, it's also
necessary to account for the placement of the months and the days within the month.

5.20.3 Discussion

Age determination is a type of date interval calculation, but one that cannot be done by computing a difference in
days and dividing by 365. That doesn't work because leap years throw off the calculation. (The interval from 1995-
03-01 to 1996-02-29 spans 365 days, but is not a year in age terms.) Using 365.25 is slightly more accurate, but
still not correct for all dates. Instead, it's necessary to determine the difference between dates in years and then
adjust for the relative location of the dates within the calendar year. (Suppose Gretchen Smith was born on April
14, 1942. To compute how old Gretchen is now, we must account for where the current date falls within the
calendar year: she's one age up through April 13 of the year, and one year older from April 14 through the end of
the year.) This section shows how to perform this kind of calculation to determine ages in units of years or months.

5.20.4 Determining Ages in Years

In general, given a birth date birth, an age in years on a target date d can be computed by the following logic:

if (d occurs earlier in the year than birth)
age = YEAR(d) - YEAR(birth) - 1

if (d occurs on or later in the year than birth)
age = YEAR(d) - YEAR(birth)

For both cases, the difference-in-years part of the calculation is the same. What distinguishes them is the relative
ordering of the dates within the calendar year. However, this ordering cannot be determined with DAYOFYEAR(),
because that only works if both dates fall during years with the same number of days. For dates in different years,
different calendar days may have the same DAYOFYEAR() value, as the following query illustrates:

mysqgl> SELECT DAYOFYEAR("1995-03-01"), DAYOFYEAR("1996-02-29%);

ey ey +
| DAYOFYEAR("1995-03-01") | DAYOFYEAR("1996-02-29%) |
e e +
| 60 | 60 |
e o +

The fact that ISO date strings compare naturally in the proper order comes to our rescue here—or more precisely,
the fact that the rightmost five characters that represent the month and day also compare properly:

mysqgl> SELECT RIGHT("1995-03-01",5), RIGHT("1996-02-29",5);

e S +
| RIGHT("1995-03-01",5) | RIGHT("1996-02-29",5) |
gy Sy +
| 03-01 | 02-29 |
e e +
mysql> SELECT IF("02-29" < "03-01",7"02-29","03-01") AS earliest;
o +

| earliest |

o +

| 02-29 |

Fom e +

This means that we can perform the "earlier-in-year" test for two dates, d1 and d2, like this:

RIGHT(d2,5) < RIGHT(d1,5)

The expression evaluates to 1 or 0, depending on the result of the test, so the result of the < comparison can be used
to perform an age-in-years calculation:

YEAR(d2) - YEAR(d1) - (RIGHT(d2,5) < RIGHT(d1,5))

To make it more obvious what the comparison result evaluates to, wrap it in an 1F() function that explicitly
returns 1 or O:

YEAR(d2) - YEAR(d1) - IF(RIGHT(d2,5) < RIGHT(d1,5),1,0)

The following query demonstrates how this formula works to calculate an age as of the beginning 1975 for
someone born on 1965-03-01. It shows the unadjusted age difference in years, the adjustment value, and the final
age:

mysql> SET @birth = "1965-03-01";
mysql> SET @target = "1975-01-01"7;
mysqgl> SELECT @birth, @target,
-> YEAR(@target) - YEAR(@birth) AS "difference-,
-> IF(RIGHT(@target,5) < RIGHT(@birth,5),1,0) AS "adjustment”,
-> YEAR(@target) - YEAR(@birth)
-> - IF(RIGHT(@target,5) < RIGHT(@birth,5),1,0)

-> AS "age”;
o o o o R — +
| @birth | @target | difference | adjustment | age |
o o Fom o — F T —— +
| 1965-03-01 | 1975-01-01 | 10 | 1] 9 1
o R o R — +

Let's try the age-in-years formula with a sibling table that lists the birth dates of Gretchen Smith and her brothers
Wilbur and Franz:

T —— TR +
| name | birth |
TR Fom e +
Gretchen	1942-04-14
Wilbur	1946-11-28
Franz	1953-03-05
TR TR - +

The formula produces answers for questions such as the following:

How old are the Smith children today?
mysql> SELECT name, birth, CURDATE() AS today,

. -> YEAR(CURDATE()) - YEAR(birth)

o -> - IF(RIGHT(CURDATE(),5) < RIGHT(birth,5),1,0)
o -> AS "age in years”

° -> FROM sibling;

° o o o Ry Y +
° | name | birth | today | age in years |
° o —— o — o Ry +
° | Gretchen | 1942-04-14 | 2002-07-15 | 60 |
o | Wilbur | 1946-11-28 | 2002-07-15 | 55 |
o | Franz | 1953-03-05 | 2002-07-15 | 49 |

o o~ o~ o +

How old were Gretchen and Wilbur when Franz was born?
mysql> SELECT name, birth, "1953-03-05" AS "Franz"" birthday",

. -> YEAR("1953-03-05") - YEAR(birth)

o -> - IF(RIGHT("1953-03-05",5) < RIGHT(birth,5),1,0)

o -> AS "age in years”

° -> FROM sibling WHERE name != “"Franz®;

° o o Ry Uy iy Ry +

° | name | birth | Franz® birthday | age in years |

° o o Ry Uy iy Ry +

o | Gretchen | 1942-04-14 | 1953-03-05 | 10 |

o | Wilbur | 1946-11-28 | 1953-03-05 | 6 |
Fom e o o o +

When performing calculations of this nature, be sure to remember that, for comparisons on the vm-DD part of date
strings to yield correct results, you must use ISO values like 1987-07-01 and not close-to-1SO values like 1987-7-
1. For example, the following comparison produces a result that is correct in lexical terms but incorrect in temporal
terms:

mysqgl> SELECT RIGHT("1987-7-1",5) < RIGHT("1987-10-01",5);

gy +
| RIGHT("1987-7-1",5) < RIGHT("1987-10-01",5) |
S +
| 01
o +

The absence of leading zeros in the month and day parts of the first date makes the substring-based comparison
fail.

5.20.5 Determining Ages in Months

The formula for calculating ages in months is similar to that for ages in years, except that we multiply the years
difference by 12, add the months difference, and adjust for the relative day-in-month values of the two dates. In
this case, we need to use the month and day part of each date separately, so we may as well extract them directly
using MONTH() and DAYOFMONTH() rather than performing a comparison on the Mv-DD part of the date strings.
The current ages of the Smith children in months thus can be calculated like this:

mysql> SELECT name, birth, CURDATE() AS today,
-> (YEAR(CURDATE()) - YEAR(birth)) * 12
-> + (MONTH(CURDATE()) - MONTH(birth))
-> - IF(DAYOFMONTH(CURDATE()) < DAYOFMONTH(birth),1,0)
-> AS "age in months*®
-> FROM sibling;

o o o o +
| name | birth | today | age in months |
Fom e o o o +
| Gretchen | 1942-04-14 | 2002-07-15 | 723 |

| Wilbur | 1946-11-28 | 2002-07-15 | 667 |

| Franz | 1953-03-05 | 2002-07-15 | 592 |
o e e Ly +

5.21 Shifting Dates by a Known Amount
5.21.1 Problem

You want to shift a given date by a given amount to compute the resulting date.

5.21.2 Solution
Use DATE_ADD() or DATE_SUB().

5.21.3 Discussion

If you have a reference date and want to calculate another date from it that differs by a known interval, the problem
generally can be solved by basic date arithmetic using DATE_ADD() and DATE_SUB(). Some examples of this
kind of question include finding anniversary dates, determining expiration dates, or finding records that satisfy
"this date in history™ queries. This section illustrates a couple of applications for date shifting.

5.21.4 Calculating Anniversary Dates

Suppose you're getting married on August 6, 2003, and you don't want to wait a year for your first anniversary to
show your devotion to your sweetheart. Instead, you want to get her special gifts on your 1 week, 1 month, 3
month, and 6 month anniversaries. To calculate those dates, shift your anniversary date forward by the desired
intervals, as follows:

mysql> SET @d = "2003-08-06";

mysql> SELECT @d AS "start date”,
-> DATE_ADD(@d, INTERVAL 7 DAY) AS "1 week",
-> DATE_ADD(@d, INTERVAL 1 MONTH) AS "1 month*®,
-> DATE_ADD(@d, INTERVAL 3 MONTH) AS ®3 months*,
-> DATE_ADD(@d, INTERVAL 6 MONTH) AS "6 months”;

Fm Fmm o o o +
| start date | 1 week | 1 month | 3 months | 6 months |
TR - TR - TR —- R - R ——— +
| 2003-08-06 | 2003-08-13 | 2003-09-06 | 2003-11-06 | 2004-02-06 |
Fm Fmm o o o +

If you're interested only in part of an anniversary date, you may be able to dispense with date arithmetic altogether.
For example, if you graduated from school on June 4, 2000, and you want to know the years on which your 10th,
20th, and 40th class reunions will be, it's unnecessary to use DATE_ADD(). Just extract the year part of the
reference date and use normal arithmetic to add 10, 20, and 40 to it:

mysql> SET @y = YEAR("2000-06-04");
mysql> SELECT @y + 10, @y + 20, @y + 40;
o o o +

| @y + 10 | @y + 20 | @y + 40 |
o o o +

I 2010 | 2020 | 2040 |

5.21.5 Time Zone Adjustments

A MySQL server returns dates using the time zone of the host on which the server runs. If you're running a client
program in a different time zone, you can adjust values to client local time with DATE_ADD(). To convert times
for a server that is two hours ahead of the client, subtract two hours:

mysqgl> SELECT dt AS "server time-,

-> DATE_ADD(dt, INTERVAL -2 HOUR) AS “client time*”

-> FROM datetime val;
e Sy +
| server time | client time |
o e +
1970-01-01 00:00:00	1969-12-31 22:00:00
1987-03-05 12:30:15	1987-03-05 10:30:15
1999-12-31 09:00:00	1999-12-31 07:00:00
2000-06-04 15:45:30	2000-06-04 13:45:30
o e +

Note that the server has no idea what time zone the client is in, so you are responsible for determining the amount
of shift between the client and the server time zones. Within a script, you may be able to do this by getting the
current local time and comparing it to the server's idea of its local time. In Perl, the Tocaltime() function comes
in handy for this:

my ($sec, $min, $hour, $day, $mon, $year) = localtime (time ());
my $now = sprintf ("%04d-%02d-%02d %02d:%02d:%02d"",
$year + 1900, $mon + 1, $day, $hour, $min, $sec);
my ($server_now, $adjustment) = $dbh->selectrow _array (
"SELECT NOW(), UNIX_TIMESTAMP(?) - UNIX_TIMESTAMP(NOW())",
undef, $now);
print "client now: $now\n";
print "server now: $server_now\n";
print "adjustment (secs): $adjustment\n'';

5.22 Finding First and Last Days of Months
5.22.1 Problem

Given a date, you want to determine the date for the first or last day of the month in which the date occurs, or the
first or last day for the month n months away.

5.22.2 Solution

You can do this by date shifting.

5.22.3 Discussion

Sometimes you have a reference date and want to reach a target date that doesn't have a fixed relationship to the
reference date. For example, to find the last day of the month, the amount that you shift the current date depends
on what day of the month it is now and the length of the current month.

To find the first day of the month for a given date, shift the date back by one fewer days than its DAYOFMONTH()
value:

mysql> SELECT d, DATE_SUB(d, INTERVAL DAYOFMONTH(d)-1 DAY) AS "i1st of month"
-> FROM date val;

o o +
| d | 1st of month |
TR . S +
1864-02-28	1864-02-01
1900-01-15	1900-01-01
1987-03-05	1987-03-01
1999-12-31	1999-12-01
2000-06-04	2000-06-01
TR . T +

In the general case, to find the first of the month for any month n months away from a given date, calculate the first
of the month for the date, then shift the result by n months:

DATE_ADD(DATE_SUB(d, INTERVAL DAYOFMONTH(d)-1 DAY), INTERVAL n MONTH)

For example, to find the first day of the previous and following months relative to a given date, n would be -1 and
1:

mysqgl> SELECT d,
-> DATE_ADD(DATE_SUB(d, INTERVAL DAYOFMONTH(d)-1 DAY), INTERVAL -1 MONTH)
-> AS "1st of previous month",
-> DATE_ADD(DATE_SUB(d, INTERVAL DAYOFMONTH(d)-1 DAY),INTERVAL 1 MONTH)
-> AS "1st of following month*
-> FROM date val;

o e Ry +
| d 1st of previous month | 1st of following month |
o e e +
1864-02-28	1864-01-01	1864-03-01
1900-01-15	1899-12-01	1900-02-01
1987-03-05	1987-02-01	1987-04-01
1999-12-31	1999-11-01	2000-01-01
2000-06-04	2000-05-01	2000-07-01
Fmm Ry Ry +

Finding the last day of the month for a given reference date is more difficult, because months vary in length.
However, the last day of the month is always the day before the first of the next month, and we know how to
calculate the latter. Thus, for the general case, the last day of the month n months from a date can be determined
using the following procedure:

1. Find the first day of the month
2. Shift the result by n+1 months
3. Shift back a day

The SQL expression to perform these operations look like this:

DATE_SUB(
DATE_ADD(DATE_SUB(d, INTERVAL DAYOFMONTH(d)-1 DAY), INTERVAL n+1 MONTH),
INTERVAL 1 DAY)

For example, to calculate the last day of the month for the previous, current, and following months relative to a
given date, n would be -1, 0, and 1, and the expressions look like this:

mysqgl> SELECT d,
-> DATE_SUB(
-> DATE_ADD(DATE_SUB(d, INTERVAL DAYOFMONTH(d)-1 DAY), INTERVAL O MONTH),
-> INTERVAL 1 DAY)
-> AS "last, prev. month-",
-> DATE_SUB(
-> DATE_ADD(DATE_SUB(d, INTERVAL DAYOFMONTH(d)-1 DAY), INTERVAL 1 MONTH),
-> INTERVAL 1 DAY)
-> AS "last, this month®,
-> DATE_SUB(
-> DATE_ADD(DATE_SUB(d, INTERVAL DAYOFMONTH(d)-1 DAY), INTERVAL 2 MONTH),
-> INTERVAL 1 DAY)
-> AS “last, following month*
-> FROM date val;

o o e e +
| d | last, prev. month | last, this month | last, following month |
S S S S +
1864-02-28	1864-01-31	1864-02-29	1864-03-31
1900-01-15	1899-12-31	1900-01-31	1900-02-28
1987-03-05	1987-02-28	1987-03-31	1987-04-30
1999-12-31	1999-11-30	1999-12-31	2000-01-31
2000-06-04	2000-05-31	2000-06-30	2000-07-31
o o R e +

The last day of the previous month is a special case for which the general expression can be simplified quite a bit:

mysqgl> SELECT d,
-> DATE_SUB(d, INTERVAL DAYOFMONTH(d) DAY)
-> AS "last of previous month*
-> FROM date val;
________________________ +

| d | last of previous month |
o e +
1864-02-28	1864-01-31
1900-01-15	1899-12-31
1987-03-05	1987-02-28
1999-12-31	1999-11-30
2000-06-04	2000-05-31
o Ry +

The key feature of the general last-of-month expression is that it begins by finding the first-of-month value for the
starting date. That gives you a useful point of reference, because you can always shift it forward or backward by
month units to obtain another first-of-month value, which can in turn be shifted back a day to find a last-of-month
value. If you determine last-of-month values by finding the last-of-month value for the starting date and then
shifting that, you won't always get the correct result, because not all months have the same number of days. For
example, an incorrect method for determining the last day of a given month is to find the last day of the previous
month and add a month:

mysqgl> SELECT d,
-> DATE_ADD(DATE_SUB(d, INTERVAL DAYOFMONTH(d) DAY), INTERVAL 1 MONTH)
-> AS “last of month*®
-> FROM date val;

Fmm Ry +
| d | Tast of month |
o Ry +
1864-02-28	1864-02-29
1900-01-15	1900-01-31
1987-03-05	1987-03-28
1999-12-31	1999-12-30
2000-06-04	2000-06-30
Fmm o +

This fails because the day-of-month part of the resulting date may not be correct. In the rows for 1987-03-05 and
1999-12-31, the last day of the month has been calculated incorrectly. This will be true with the preceding
formula for any month in which the month preceding the reference date has fewer days than the target month.

5.23 Finding the Length of a Month
5.23.1 Problem
You want to know how many days there are in a month.

5.23.2 Solution

Determine the date of its last day, then extract the day-of-month component from the result.

5.23.3 Discussion

To determine the number of days for the month in which a given date occurs, calculate the date for the last day of
the month as shown in the previous section, then extract the DAYOFMONTH() value from the result:

mysql> SELECT d,
-> DAYOFMONTH(DATE_SUB(
-> DATE_ADD(DATE_SUB(d, INTERVAL DAYOFMONTH(d)-1 DAY), INTERVAL 1 MONTH),
-> INTERVAL 1 DAY))
-> AS “days in month~
-> FROM date val;
Fmm e +
| d | days in month |
S Iy +
| 1864-02-28 | 29 |

1900-01-15	31
1987-03-05	31
1999-12-31	31
2000-06-04	30
o Ly +

5.23.4 See Also

Recipe 5.28 later in this chapter discusses another way to calculate month lengths. Chapter 10 discusses leap year
calculations in the context of date validation.

5.24 Calculating One Date from Another by Substring
Replacement

5.24.1 Problem

Given a date, you want to produce another date from it, and you know the two dates share some components in
common.

5.24.2 Solution

Treat a date or time value as a string and perform direct replacement on parts of the string.

5.24.3 Discussion

In some cases, you can use substring replacement to calculate dates without performing any date arithmetic. For
example, you can use string operations to produce the first-of-month value for a given date by replacing the day
component with 01. You can do this either with DATE_FORMAT() or with CONCAT():

mysqgl> SELECT d,
-> DATE_FORMAT(d, "%Y-%m-01") AS method1l,
-> CONCAT(YEAR(d), "-",LPAD(MONTH(d),2,"0"),"-01") AS method2
-> FROM date val;

o o o +
| d | methodl | method2 |
Fom o o +
1864-02-28	1864-02-01	1864-02-01
1900-01-15	1900-01-01	1900-01-01
1987-03-05	1987-03-01	1987-03-01
1999-12-31	1999-12-01	1999-12-01
2000-06-04	2000-06-01	2000-06-01
Fmm o o +

The string replacement technique can also be used to produce dates with a specific position within the calendar
year. For New Year's Day (January 1), replace the month and day with 01:

mysql> SELECT d,
-> DATE_FORMAT(d, "%Y-01-01") AS methodl,
-> CONCAT(YEAR(d),"-01-01") AS method2

-> FROM date val;

1864-02-28
1900-01-15
1987-03-05
1999-12-31
2000-06-04

1864-01-01
1900-01-01
1987-01-01
1999-01-01
2000-01-01

T —— —— — o —

____________ +

method?2

1864-01-01
1900-01-01
1987-01-01
1999-01-01
2000-01-01

For Christmas, replace the month and day with 12 and 25:

mysqgl> SELECT d,
-> DATE_FORMAT(d, "%Y-12-25") AS methodl,
-> CONCAT(YEAR(d),"-12-25") AS method?2

-> FROM date val;

1864-02-28
1900-01-15
1987-03-05
1999-12-31
2000-06-04

1864-12-25
1900-12-25
1987-12-25
1999-12-25
2000-12-25

T —— —— — o —

____________ +

method?2

1864-12-25
1900-12-25
1987-12-25
1999-12-25
2000-12-25

To perform the same operation for Christmas in other years, combine string replacement with date shifting. The
following query shows two ways to determine the date for Christmas two years hence. The first method finds
Christmas for this year, then shifts it two years forward. The second shifts the current date forward two years, then
finds Christmas in the resulting year:

mysql> SELECT CURDATE(),

DATE_ADD(DATE_FORMAT(CURDATE(), "%Y-12-25"), INTERVAL 2 YEAR)
AS methodl,
DATE_FORMAT (DATE_ADD(CURDATE(), INTERVAL 2 YEAR), "%Y-12-25%)
AS method2;

e e o +
| CURDATE(C) | methodl | method2 |
Fom e — Foe e Fom e — +
| 2002-07-15 | 2004-12-25 | 2004-12-25 |
e e o +

5.25 Finding the Day of the Week for a Date

5.25.1 Problem

You want to know the day of the week a date falls on.

5.25.2 Solution

Use the DAYNAME() function.

5.25.3 Discussion

To determine the name of the day of the week for a given date, use DAYNAME():

mysql> SELECT CURDATE(), DAYNAME(CURDATE());

o o +
| CURDATE() | DAYNAME(CURDATE()) |
e gy +
| 2002-07-15 | Monday I
e e +

DAYNAME() is often useful in conjunction with other date-related techniques. For example, to find out the day of
the week for the first of the month, use the first-of-month expression from earlier in the chapter as the argument to
DAYNAME():

mysqgl> SET @d = CURDATE();
mysql> SET @first = DATE SUB(@d, INTERVAL DAYOFMONTH(@d)-1 DAY);
mysqgl> SELECT @d AS "starting date~,

-> @first AS "1st of month date",

-> DAYNAME(@First) AS "1st of month day”;

o Ry Ry +
| starting date | 1st of month date | 1st of month day |
o Ty o +
| 2002-07-15 | 2002-07-01 | Monday |
o e Ry +

5.26 Finding Dates for Days of the Current Week

5.26.1 Problem

You want to compute the date for some other day of the current week.

5.26.2 Solution

Figure out the number of days between the starting day and the desired day, and shift the date by that many days.
5.26.3 Discussion

This section and the next describe how to convert one date to another when the target date is specified in terms of
days of the week. To solve such problems, you need to know day-of-week values. For example, if you want to
know what date it is on Tuesday of this week, the calculation depends on what day of the week it is today. If today
is Monday, you add a day to CURDATE(), but if today is Wednesday, you subtract a day.

MySQL provides two functions that are useful here. DAYOFWEEK () treats Sunday as the first day of the week and
returns 1 through 7 for Sunday through Saturday. WEEKDAY () treats Monday as the first day of the week and

returns O through 6 for Monday through Sunday. (The examples shown here use DAYOFWEEK().) Another kind of
day-of-week operation involves determining the name of the day. DAYNAME() can be used for that.

Calculations that determine one day of the week from another depend on the day you start from as well as the day
you want to reach. I find it easiest to shift the reference date first to a known point relative to the beginning of the
week, then shift forward:

Shift the reference date back by its DAYOFWEEK() value, which always produces the date for the Saturday
preceding the week.
Add one day to the result to reach the Sunday date, two days to reach the Monday date, and so forth.

In SQL, these operations can be expressed as follows for a date d, where n is 1 through 7 to produce the dates for
Sunday through Saturday:

DATE_ADD(DATE_SUB(d, INTERVAL DAYOFWEEK(d) DAY), INTERVAL n DAY)

That expression splits the "shift back to Saturday" and "shift forward" phases into separate operations, but because
the intervals for both DATE_SUB() and DATE_ADD() are both in days, the expression can be simplified into a
single DATE_ADD() call:

DATE_ADD(d, INTERVAL n-DAYOFWEEK(d) DAY)

If we apply this formula to our date_val table, using an n of 1 for Sunday and 7 for Saturday to find the first and
last days of the week, we get this result:

mysql> SELECT d, DAYNAME(d) AS day,
-> DATE_ADD(d, INTERVAL 1-DAYOFWEEK(d) DAY) AS
-> DATE_ADD(d, INTERVAL 7-DAYOFWEEK(d) DAY) AS
-> FROM date_val;

Sunday,
Saturday

o Fom e o o +
| d | day | Sunday | Saturday |
o o —_—— o o +
1864-02-28	Sunday	1864-02-28	1864-03-05
1900-01-15	Monday	1900-01-14	1900-01-20
1987-03-05	Thursday	1987-03-01	1987-03-07
1999-12-31	Friday	1999-12-26	2000-01-01
2000-06-04	Sunday	2000-06-04	2000-06-10
o oo o o +

5.27 Finding Dates for Weekdays of Other Weeks

5.27.1 Problem

You want to compute the date for some weekday of some other week.

5.27.2 Solution

Figure out the date for that weekday in the current week, then shift the result into the desired week.

5.27.3 Discussion

Calculating the date for a day of the week in some other week is a problem that breaks down into a day-within-
week shift (using the formula given in the previous section) plus a week shift. These operations can be done in
either order because the amount of shift within the week is the same whether or not you shift the reference date
into a different week first. For example, to calculate Wednesday of a week by the preceding formula, nis 4. To
compute the date for Wednesday two weeks ago, you can perform the day-within-week shift first, like this:

mysql> SET @target =
-> DATE_SUB(DATE_ADD(CURDATE(), INTERVAL 4-DAYOFWEEK(CURDATE()) DAY),
-> INTERVAL 14 DAY);

mysql> SELECT CURDATE(), @target, DAYNAME(@target);

o o o +
| CURDATE() | @target | DAYNAME(@target) |
TR . TR S +
| 2002-07-15 | 2002-07-03 | Wednesday |
o o o +

Or you can perform the week shift first:

mysqgl> SET @target =
-> DATE_ADD(DATE_SUB(CURDATE(), INTERVAL 14 DAY),
-> INTERVAL 4-DAYOFWEEK(CURDATE()) DAY);

mysql> SELECT CURDATE(), @target, DAYNAME(@target);

TR - TR - +
| CURDATE() | @target | DAYNAME(@target) |
o o o +
| 2002-07-15 | 2002-07-03 | Wednesday |
Fm Fmm Ry +

Some applications need to determine dates such as the n-th instance of particular weekdays. For example, if you
administer a payroll where paydays are the 2nd and 4th Thursdays of each month, you'd need to know what those
dates are. One way to do this for any given month is to begin with the first-of-month date and shift it forward. It's
easy enough to shift the date to the Thursday in that week; the trick is to figure out how many weeks forward to
shift the result to reach the 2nd and 4th Thursdays. If the first of the month occurs on any day from Sunday through
Thursday, you shift forward one week to reach the 2nd Thursday. If the first of the month occurs on Friday or later,
you shift forward by two weeks. The 4th Thursday is of course two weeks after that.

The following Perl code implements this logic to find all paydays in the year 2002. It runs a loop that constructs
the first-of-month date for the months of the year. For each month, it issues a query that determines the dates of the
2nd and 4th Thursdays:

my $year = 2002;
print “"MM/CCYY 2nd Thursday 4th Thursday\n™;
foreach my $month (1..12)

my $Ffirst = sprintf ('%04d-%02d-01", $year, $month);
my ($thu2, $thu4) = $dbh->selectrow_array (qqg{
SELECT
DATE_ADD(
DATE_ADD(?, INTERVAL 5-DAYOFWEEK(?) DAY),

INTERVAL IF(DAYOFWEEK(?) <= 5, 7, 14) DAY),
DATE_ADD(
DATE_ADD(?, INTERVAL 5-DAYOFWEEK(?) DAY),
INTERVAL IF(DAYOFWEEK(?) <= 5, 21, 28) DAY)
}, undef, $first, $first, $first, $first, $first, $first);
printf "%02d/%04d %s %s\n', $month, $year, $thu2, $thu4;

The output from the program looks like this:

MM/CCYY 2nd Thursday 4th Thursday
01/2002 2002-01-10 2002-01-24
02/2002 2002-02-14 2002-02-28
0372002 2002-03-14 2002-03-28
04/2002 2002-04-11 2002-04-25
05/2002 2002-05-09 2002-05-23
06/2002 2002-06-13 2002-06-27
07/2002 2002-07-11 2002-07-25
08/2002 2002-08-08 2002-08-22
09/2002 2002-09-12 2002-09-26
1072002 2002-10-10 2002-10-24
1172002 2002-11-14 2002-11-28
1272002 2002-12-12 2002-12-26

5.28 Performing Leap Year Calculations
5.28.1 Problem

You need to perform a date calculation that must account for leap years. For example, the length of a month or a
year depends on knowing whether or not the date falls in a leap year.

5.28.2 Solution

Know how to test whether or not a year is a leap year and factor the result into your calculation.

5.28.3 Discussion

Date calculations are complicated by the fact that months don't all have the same number of days, and an additional
headache is that February has an extra day during leap years. This section shows how to determine whether or not

any given date falls within a leap year, and how to take leap years into account when determining the length of a
year or month.

5.28.4 Determining Whether a Date Occurs in a Leap Year

To determine whether or not a date d falls within a leap year, obtain the year component using YEAR() and test
the result. The common rule-of-thumb test for leap years is "divisible by four,” which you can test using the %
modulo operator like this:

YEAR(d) % 4 = O

However, that test is not technically correct. (For example, the year 1900 is divisible by four, but is not a leap
year.) For a year to qualify as a leap year, it must satisfy both of the following constraints:

e The year must be divisible by four.
e The year cannot be divisible by 100, unless it is also divisible by 400.

The meaning of the second constraint is that turn-of-century years are not leap years, except every fourth century.
In SQL, you can express these conditions as follows:

(YEAR(d) % 4 = 0) AND ((YEAR(d) % 100 '= 0) OR (YEAR(d) % 400 = 0))

Running our date_val table through both the rule-of-thumb leap-year test and the complete test produces the
following results:

mysql> SELECT
-> d,
-> YEAR(d) % 4 = O
-> AS "rule-of-thumb test",
-> (YEAR(dD) % 4 = 0) AND ((YEAR(d) % 100 '= 0) OR (YEAR(d) % 400 = 0))
-> AS "complete test"
-> FROM date_val;

Fmm Ry o +
| d | rule-of-thumb test | complete test |
e e o +
| 1864-02-28 | 1] 1]
| 1900-01-15 | 1] (O] |
| 1987-03-05 | (O] | 01
| 1999-12-31 | 01 01
| 2000-06-04 | 1] 1]
o o o +

As you can see, the two tests don't always produce the same result. In particular, the rule-of-thumb test fails for the
year 1900; the complete test result is correct because it accounts for the turn-of-century constraint.

& &

Because the complete leap-year test needs to check the century, it requires four-digit year
o values. Two-digit years are ambiguous with respect to the century, making it impossible to
"4 assess the turn-of-century constraint.

= I

If you're working with date values within a program, you can perform leap-year tests with your API language
rather than at the SQL level. Pull off the first four digits of the date string to get the year, then test it. If the
language performs automatic string-to-number conversion of the year value, this is easy. Otherwise, you must
convert the year value to numeric form before testing it.

In Perl and PHP, the leap-year test syntax is as follows:

$year = substr ($date, 0, 4);
$is_leap = ($year % 4 == 0) && (Byear % 100 = 0 || $year % 400 == 0);

The syntax for Python is similar, although a type conversion operation is necessary:
year = int (date[0:4])

is leap = (year % 4 == 0) and (year % 100 = O or year % 400 == 0)
Type conversion is necessary for Java as well:

int year = Integer.valueOf (date.substring (0, 4)).intvalue ();

boolean is_leap = (year % 4 == 0) && (year % 100 '= 0 || year % 400 == 0);

5.28.5 Using Leap Year Tests for Year-Length Calculations

Years are usually 365 days long, but leap years have an extra day. To determine the length of a year in which a
date falls, you can use one of the leap year tests just shown to figure out whether to add a day:

$year = substr ($date, 0, 4);
$is_leap = ($year % 4 == 0) && (Byear % 100 = 0 || $year % 400 == 0);
$days_in_year = ($is_leap ? 366 : 365);

Another way to compute a year's length is to compute the date of the last day of the year and pass it to DAYOFYEAR(
):

mysql> SET @d = "2003-04-13";
mysql> SELECT DAYOFYEAR(DATE_FORMAT(@d, "%Y-12-31"));

i +
| DAYOFYEAR(DATE_FORMAT(@d, "%Y-12-31")) |
o +
I 365 |
A +

mysql> SET @d = "2004-04-13";
mysql> SELECT DAYOFYEAR(DATE_FORMAT(@d, "%Y-12-31"));

Ty Sy Sy Sy +
| DAYOFYEAR(DATE_FORMAT(@d, "%Y-12-31")) |
e +
| 366 |
Ty Sy Sy Sy +

5.28.6 Using Leap Year Tests for Month-Length Calculations

Earlier in Recipe 5.23, we discussed how to determine the number of days in a month using date shifting to find
the last day of the month. Leap-year testing provides an alternate way to accomplish the same objective. All
months except February have a fixed length, so by examining the month part of a date, you can tell how long it is.
You can also tell how long a given February is if you know whether or not it occurs within a leap year.

A days-in-month expression can be written in SQL like this:

mysqgl> SELECT d,
-> ELT(MONTH(d),
-> 31,

-> IF((YEAR(d)%4 = 0) AND ((YEAR(d)%100 != 0) OR (YEAR(d)%400 = 0)),29,28),
-> 31,30,31,30,31,31,30,31,30,31)

-> AS “"days in month*®

-> FROM date val;

o o +
| d | days in month |
o o +
1864-02-28	29
1900-01-15	31
1987-03-05	31
1999-12-31	31
2000-06-04	30
Fmm o +

The ELT() function evaluates its first argument to determine its value n, then returns the n-th value from the
following arguments. This is straightforward except for February, where ELT() must return 29 or 28 depending
on whether or not the year is a leap year.

Within an API language, you can write a function that, given an ISO-format date argument, returns the number of
days in the month during which the date occurs. Here's a Perl version:

sub days_in_month

{
my $date = shift;
my $year = substr ($date, 0, 4);

my $month = substr ($date, 5, 2); # month, l-based

my @days_ in_month = (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);

my $days = $days_in_month[$month-1];

my $is_leap = ($year % 4 == 0) && ($year % 100 !'= O || $year % 400 == 0);
$days++ 1If $month == 2 && $is_leap; # add a day for Feb of leap years

return ($days);
b

5.29 Treating Dates or Times as Numbers

5.29.1 Problem

You want to treat a temporal string as a number.

5.29.2 Solution

Perform a string-to-number conversion.

5.29.3 Discussion

In many cases, it is possible in MySQL to treat date and time values as numbers. This can sometimes be useful if

you want to perform an arithmetic operation on the value. To force conversion of a temporal value to numeric
form, add zero or use it in a numeric context:

mysqgl> SELECT t1,
-> t1+0 AS "tl1 as number”®,

-> FLOOR(t1l) AS "tl1 as number®,
-> FLOOR(t1/10000) AS “hour part*®
-> FROM time_val;

Fom e o o Ry +
| t1 | t1 as number | t1 as number | hour part |
o o Ry o +
| 15:00:00 | 150000 | 150000 | 15 |
| 05:01:30 | 50130 | 50130 | 5]
| 12:30:20 | 123020 | 123020 | 12 |
o o o o +

The same kind of conversion can be performed for date or date-and-time values:

mysql> SELECT d, d+0 FROM date_val;

o o —_—— +
| d | d+0 |
o o +
1864-02-28	18640228
1900-01-15	19000115
1987-03-05	19870305
1999-12-31	19991231
2000-06-04	20000604
Fm Fom e +	
mysqgl> SELECT dt, dt+0 FROM datetime_val;	
e Ry +	
dt	dt+0
Ry o +	
1970-01-01 00:00:00	19700101000000
1987-03-05 12:30:15	19870305123015
1999-12-31 09:00:00	19991231090000
2000-06-04 15:45:30	20000604154530
Ry o +

A value produced by adding zero is not the same as that produced by conversion into basic units like seconds or
days. The result is essentially what you get by removing all the delimiters from the string representation of the
original value. Also, conversion to numeric form works only for values that MySQL interprets temporally. If you
try converting a literal string to a number by adding zero, you'll just get the first component:

mysqgl> SELECT "1999-01-01"+0, "1999-01-01 12:30:45"+0, "12:30:45"+0;

S S o +
| "1999-01-01"+0 | "1999-01-01 12:30:45"+0 | "12:30:45"+0 |
S gy Sy +
I 1999 | 1999 | 12 |
Oy Sy S +

This same thing happens with functions such as DATE_FORMAT() and TIME_FORMAT(), or if you pull out parts of
DATETIME or TIMESTAMP values with LEFT() or RIGHT(). In +0 context, the results of these functions are treated
as strings, not temporal types.

5.30 Forcing MySQL to Treat Strings as Temporal Values

5.30.1 Problem

You want a string to be interpreted temporally.

5.30.2 Solution

Use the string in a temporal context to give MySQL a hint about how to treat it.

5.30.3 Discussion

If you need to make MySQL treat a string as a date or time, use it in an expression that provides a temporal context

without changing the value. For example, you can't add zero to a literal TIVE string to cause a time-to-number
conversion, but if you use TIME_TO_SEC() and SEC_TO_TIME(), you can:

mysql> SELECT SEC_TO_TIME(TIME_TO_SEC("12:30:45"))+0;

ey +
| SEC_TO_TIME(TIME_TO_SEC("12:30:45"))+0 |
e +
I 123045 |
ey +

The conversion to and from seconds leaves the value unchanged but results in a context where MySQL treats the
result as a TIME value. For date values, the procedure is similar, but uses T0_DAYS() and FROM_DAYS():

mysql> SELECT "1999-01-01"+0, FROM_DAYS(TO_DAYS("1999-01-01"))+0;

Oy o +
| "1999-01-01"+0 | FROM_DAYS(TO_DAYS("1999-01-01"))+0 |
S ey +
I 1999 | 19990101 |
S ey +

For DATETIME- or TIMESTAMP-formatted strings, you can use DATE_ADD() to introduce a temporal context:

mysql> SELECT
-> DATE_ADD("1999-01-01 12:30:45",INTERVAL O DAY)+0 AS “numeric datetime”,
-> DATE_ADD("19990101123045", INTERVAL O DAY)+0 AS "numeric timestamp”;

o Ty +
| numeric datetime | numeric timestamp |
T T +
| 19990101123045 | 19990101123045 |
o Ty +

5.31 Selecting Records Based on Their Temporal Characteristics
5.31.1 Problem

You want to select records based on temporal constraints.

5.31.2 Solution

Use a date or time condition in the WHERE clause. This may be based on direct comparison of column values with
known values. Or it may be necessary to apply a function to column values to convert them to a more appropriate
form for testing, such as using MONTH() to test the month part of a date.

5.31.3 Discussion

Most of the preceding date-based techniques were illustrated by example queries that produce date or time values
as output. You can use the same techniques in WHERE clauses to place date-based restrictions on the records
selected by a query. For example, you can select records occurring before or after a given date, within a date range,
or that match particular month or day values.

5.31.4 Comparing Dates to One Another

The following queries find records from the date_val table that occur either before 1900 or during the 1900s:

mysql> SELECT d FROM date_val where d < "1900-01-01°7;

o +
| d |
e +
| 1864-02-28 |
o +

| 1900-01-15 |
| 1987-03-05 |
| 1999-12-31 |

If your version of MySQL is older then 3.23.9, one problem to watch out for is that BETWEEN sometimes doesn't
work correctly with literal date strings if they are not in ISO format. For example, this may fail:

SELECT d FROM date_val WHERE d BETWEEN "1960-3-1" AND "1960-3-15";

If that happens, try rewriting the dates in 1SO format for better results:

SELECT d FROM date_val WHERE d BETWEEN "1960-03-01" AND "1960-03-157;

You can also rewrite the expression using two explicit comparisons:

SELECT d FROM date_val WHERE d >= "1960-03-01" AND d <= "1960-03-15";

When you don't know the exact date you want for a WHERE clause, you can often calculate it using an expression.
For example, to perform an "on this day in history" query to search for records in a table history to find events
occurring exactly 50 years ago, do this:

SELECT * FROM history WHERE d = DATE_SUB(CURDATE(), INTERVAL 50 YEAR);

You see this kind of thing in newspapers that run columns showing what the news events were in times past. (In
essence, the query compiles those events that have reached their n-th anniversary.) If you want to retrieve events
that occurred "on this day" for any year rather than "on this date" for a specific year, the query is a bit different. In
that case, you need to find records that match the current calendar day, ignoring the year. That topic is discussed in
Recipe 5.31.6 later in this section.

Calculated dates are useful for range testing as well. For example, to find dates that occur within the last six years,
use DATE_SUB() to calculate the cutoff date:

mysql> SELECT d FROM date val WHERE d >= DATE_SUB(CURDATE(), INTERVAL 6 YEAR):

| 1999-12-31 |
| 2000-06-04 |

Note that the expression in the WHERE clause isolates the date column d on one side of the comparison operator.
This is usually a good idea; if the column is indexed, placing it alone on one side of a comparison allows MySQL
to process the query more efficiently. To illustrate, the preceding WHERE clause can be written in a way that's
logically equivalent, but much less efficient for MySQL to execute:

- WHERE DATE_ADD(d, INTERVAL 6 MONTH) >= CURDATE();

Here, the d column is used within an expression. That means every row must be retrieved so that the expression
can be evaluated and tested, which makes any index on the column useless.

Sometimes it's not so obvious how to rewrite a comparison to isolate a date column on one side. For example, the
following WHERE clause uses only part of the date column in the comparisons:

. WHERE YEAR(d) >= 1987 AND YEAR(d) <= 1991;

To rewrite the first comparison, eliminate the YEAR() call and replace its righthand side with a complete date:

- WHERE d >= "1987-01-01" AND YEAR(d) <= 1991;

Rewriting the second comparison is a little trickier. You can eliminate the YEAR() call on the lefthand side, just as
with the first expression, but you can't just add -01-01 to the year on the righthand side. That would produce the
following result, which is incorrect:

. WHERE d >= "1987-01-01" AND d <= "1991-01-01";

That fails because dates from 1991-01-02 to 1991-12-31 fail the test, but should pass. To rewrite the second
comparison correctly, either of the following will do:

. WHERE d >= "1987-01-01" AND d <= "1991-12-31";
- WHERE d >= "1987-01-01" AND d < "1992-01-01%;

Another use for calculated dates occurs frequently in applications that create records that have a limited lifetime.
Such applications must be able to determine which records to delete when performing an expiration operation. You
can approach this problem a couple of ways:

« Store a date in each record indicating when it was created. (Do this by making the column a TIMESTAMP or
by setting it to NOw(); see Recipe 5.34 for details.) To perform an expiration operation later, determine
which records have a creation date that is too old by comparing that date to the current date. For example,
the query to expire records that were created more than n days ago might look like this:

DELETE FROM tbl_name WHERE create_date < DATE_SUB(NOW(), INTERVAL n DAY);

« Store an explicit expiration date in each record by calculating the expiration date with DATE_ADD() when
the record is created. For a record that should expire in n days, you can do that like this:

° INSERT INTO tbl_name (expire _date,...)
VALUES (DATE_ADD(NOW(), INTERVAL n DAY),...);

To perform the expiration operation in this case, compare the expiration dates to the current date to see
which ones have been reached:

DELETE FROM tbl_name WHERE expire_date < NOW()

5.31.5 Comparing Times to One Another

Comparisons involving times are similar to those involving dates. For example, to find times that occurred from 9
AM to 2 PM, use an expression like one of the following:

- WHERE t1 BETWEEN "09:00:00" AND "14:00:00";
- WHERE HOUR(t1) BETWEEN 9 AND 14;

For an indexed TIME column, the first method would be more efficient. The second method has the property that it
works not only for TIME columns, but for DATETIME and TIMESTAMP columns as well.

5.31.6 Comparing Dates to Calendar Days

To answer questions about particular days of the year, use calendar day testing. The following examples illustrate
how to do this in the context of looking for birthdays:

e Who has a birthday today? This requires matching a particular calendar day, so you extract the month and
day but ignore the year when performing comparisons:

. WHERE MONTH(d) = MONTH(CURDATE()) AND DAYOFMONTH(d) = DAYOFMONTH(CURDATE());

This kind of query commonly is applied to biographical data to find lists of actors, politicians, musicians,
etc., who were born on a particular day of the year.

It's tempting to use DAYOFYEAR() to solve "on this day" problems, because it results in simpler queries.
But DAYOFYEAR() doesn't work properly for leap years. The presence of February 29 throws off the values
for days from March through December.

e Who has a birthday this month? In this case, it's necessary to check only the month:

. WHERE MONTH(d) = MONTH(CURDATE());

e Who has a birthday next month? The trick here is that you can't just add one to the current month to get the
month number that qualifying dates must match. That gives you 13 for dates in December. To make sure
you get 1 (January), use either of the following techniques:

. ... WHERE MONTH(d) = MONTH(DATE_ADD(CURDATE(), INTERVAL 1 MONTH));
. WHERE MONTH(d) = MOD(MONTH(CURDATE()),12)+1;

5.32 Using TIMESTAMP Values

5.32.1 Problem

You want a record's creation time or last modification time to be automatically recorded.

5.32.2 Solution

The TIMESTAMP column type can be used for this. However, it has properties that sometimes surprise people, so
read this section to make sure you know what you'll be getting. Then read the next few sections for some
applications of TIMESTAMP columns.

5.32.3 Discussion

MySQL supports a TIMESTAMP column type that in many ways can be treated the same way as the DATETIME type.
However, the TIMESTAMP type has some special properties:

e The first TIMESTAMP column in a table is special at record-creation time: its default value is the current date
and time. This means you need not specify its value at all in an INSERT statement if you want the column
set to the record's creation time; MySQL will initialize it automatically. This also occurs if you set the
column to NULL when creating the record.

e The first TIMESTAMP is also special whenever any columns in a row are changed from their current values.
MySQL automatically updates its value to the date and time at which the change was made. Note that the
update happens only if you actually change a column value. Setting a column to its current value doesn't
update the TIMESTAMP.

e Other TIMESTAMP columns in a table are not special in the same way as the first one. Their default value is
zero, not the current date and time. Also, their value does not change automatically when you modify other
columns; to update them, you must change them yourself.

e A TIMESTAMP column can be set to the current date and time at any time by setting it to NULL. This is true
for any TIMESTAMP column, not just the first one.

The TIMESTAMP properties that relate to record creation and modification make this column type particularly suited
for certain kinds of problems, such as automatically recording the times at which table rows are inserted or
updated. On the other hand, there are other properties that can be somewhat limiting:

e TIMESTAMP values are represented in CCYYMMDDhhmmss format, which isn't especially intuitive or easy to
read, and often needs reformatting for display.

e The range for TIMESTAMP values starts at the beginning of the year 1970 and extends to about 2037. If you
need a larger range, you need to use DATET IME values.

The following sections show how to take advantage of the TIMESTAMP type's special properties.

5.33 Recording a Row's Last Modification Time
5.33.1 Problem

You want to automatically record the time when a record was last updated.

5.33.2 Solution

Include a TIMESTAMP column in your table.

5.33.3 Discussion

To create a table where each row contains a value that indicates when the record was most recently updated,
include a TIMESTAMP column. The column will be set to the current date and time when you create a new row, and
updated whenever you update the value of another column in the row. Suppose you create a table tsdemo1 with a
TIMESTAMP column that looks like this:

CREATE TABLE tsdemol
(
t TIMESTAMP,
val INT

)

Insert a couple of records into the table and then select its contents. (Issue the INSERT queries a few seconds apart
so that you can see how the timestamps differ.) The first INSERT statement shows that you can set t to the current
date and time by setting it explicitly to NULL; the second shows that you set t by omitting it from the INSERT
statement entirely:

mysql> INSERT INTO tsdemol (t,val) VALUES(NULL,5);
mysql> INSERT INTO tsdemol (val) VALUES(10);
mysqgl> SELECT * FROM tsdemol;

o o +
| t | val |
S Fmm—— +
| 20020715115825 | 5]
| 20020715115831 | 10 |
o S +

Now issue a query that changes one record's val column and check its effect on the table's contents:

mysql> UPDATE tsdemol SET val = 6 WHERE val = 5;
mysqgl> SELECT * FROM tsdemol;

o o +
| t | val |
S Fmm—— +
| 20020715115915 | 6 |
| 20020715115831 | 10 |
o S +

The result shows that the TIMESTAMP has been updated only for the modified record.

If you modify multiple records, the TIMESTAMP values in all of them will be updated:

mysqgl> UPDATE tsdemol SET val = val + 1;
mysqgl> SELECT * FROM tsdemol;

e Fom—— +
| t | val |
S N +
| 20020715115926 | 71
| 20020715115926 | 11 |
e Fom—— +

Issuing an UPDATE statement that doesn't actually change the values in the val column doesn't update the
TIMESTAMP values. To see this, set every record's val column to its current value, then review the contents of the
table:

mysqgl> UPDATE tsdemol SET val = val + O;
mysqgl> SELECT * FROM tsdemol;

| 20020715115926 | 71
| 20020715115926 | 11 |
S Fmm—— +

An alternative to using a TIMESTAMP is to use a DATETIME column and set it to Now() explicitly when you create a
record and whenever you update a record. However, in this case, all applications that use the table must implement
the same strategy, which fails if even one application neglects to do so.

5.34 Recording a Row's Creation Time
5.34.1 Problem

You want to record the time when a record was created, which TIMESTAVMP will do, but you want that time not to
change when the record is changed, and a TIMESTAMP cannot hold its value.

5.34.2 Solution

Actually, it can; you just need to include a second TIMESTAMP column, which has different properties than the first.

5.34.3 Discussion

If you want a column to be set initially to the time at which a record is created, but remain constant thereafter, a
single TIMESTAMP is not the solution, because it will be updated whenever other columns in the record are updated.
Instead, use two TIMESTAMP columns and take advantage of the fact that the second one won't have the same
special properties of the first. Both columns can be set to the current date and time when the record is created.
Thereafter, whenever you modify other columns in the record, the first TIMESTAMP column will be updated
automatically to reflect the time of the change, but the second remains set to the record creation time. You can see
how this works using the following table:

CREATE TABLE tsdemo2

(
t_update TIMESTAMP, # record last-modification time
t_create TIMESTAMP, # record creation time
val INT

)

Create the table, then insert into it as follows a record for which both TIMESTAMP columns are set to NULL, to
initialize them to the current date and time:

mysql> INSERT INTO tsdemo2 (t_update,t_create,val) VALUES(NULL,NULL,5);
mysql> SELECT * FROM tsdemo2;

e T e +

| t_update | t create | val |

o o f T —— +

| 20020715120003 | 20020715120003 | 51
PRy o F T —— +

After inserting the record, change the val column, then verify that the update modifies the t_update column and
leaves the t_create column set to the record-creation time:

mysqgl> UPDATE tsdemo2 SET val = val + 1;
mysqgl> SELECT * FROM tsdemo2;

e e B T —— +
| t update | t create | val |
Fom e Fom e Fem—— +
| 20020715120012 | 20020715120003 | 6 |
e e B T —— +

As with the tsdemo1 table, updates to tsdemo2 records that don't actually modify a column cause no change to
TIMESTAMP values:

mysqgl> UPDATE tsdemo2 SET val = val + O;
mysqgl> SELECT * FROM tsdemo2;

e e B T —— +
| t update | t create | val |
Fom e Fom e Fem—— +
| 20020715120012 | 20020715120003 | 6 |
T S F T — +

An alternative strategy is to use DATETIME columns for t_create and t_update. When creating a record, set them
both to Now() explicitly. When modifying a record, update t_update to NOW() and leave t_create alone.

5.35 Performing Calculations with TIMESTAMP Values
5.35.1 Problem

You want to calculate intervals between TIMESTAMP values, search for records based on a TIMESTAMP column, and
so forth.

5.35.2 Solution

TIMESTAMP values are susceptible to the same kinds of date calculations as DATETIME values, such as comparison,
shifting, and component extraction.

5.35.3 Discussion

The following queries show some of the possible operations you can perform on TIMESTAMP values, using the
tsdemo2 table from Recipe 5.34:

e Records that have not been modified since they were created:

SELECT * FROM tsdemo2 WHERE t create = t_update;

e Records modified within the last 12 hours:

SELECT * FROM tsdemo2 WHERE t_update >= DATE_SUB(NOW(), INTERVAL 12 HOUR);

o The difference between the creation and modification times (here expressed both in seconds and in hours):
° SELECT t_create, t_update,
° UNIX_TIMESTAMP(t update) - UNIX _TIMESTAMP(t create) AS "seconds”,
. (UNIX_TIMESTAMP(t_update) - UNIX_TIMESTAMP(t_create))/(60 * 60) AS “hours"
FROM tsdemo2;

e Records created from 1 PM to 4 PM:

° SELECT * FROM tsdemo2
WHERE HOUR(t_create) BETWEEN 13 AND 16;

Or:

SELECT * FROM tsdemo2
WHERE DATE_FORMAT(t_create, "%H%i%s") BETWEEN "130000° AND "160000";

Or even by using TIME_TO_SEC() to strip off the date part of the t_create values:

SELECT * FROM tsdemo2
WHERE TIME_TO_SEC(t_create)
BETWEEN TIME_TO_SEC("13:00:00") AND TIME_TO_SEC("16:00:00%);

5.36 Displaying TIMESTAMP Values in Readable Form

5.36.1 Problem

You don't like the way that MySQL displays TIMESTAMP values.

5.36.2 Solution

Reformat them with the DATE_FORMAT() function.

5.36.3 Discussion

TIMESTAMP columns have certain desirable properties, but one that sometimes isn't so desirable is the display
format (CCyymMmDDhhmmss). As a long unbroken string of digits, this is inconsistent with DATET IME format (CCYY-

MM-DD hh:mm:ss) and is also more difficult to read. To rewrite TIMESTAMP values into DATET IME format, use the
DATE_FORMAT() function. The following example uses the tsdemo2 table from Recipe 5.34:

mysqgl> SELECT t_create, DATE_FORMAT(t_create, "%Y-%m-%d %T") FROM tsdemo2;

o e +
| t create | DATE_FORMAT(t_create, "%Y-%m-%d %T") |
PRy Ty +
| 20020715120003 | 2002-07-15 12:00:03 |
S Sy o +

You can go in the other direction, too (to display DATETIME values in TIMESTAMP format), though this is much less
common. One way is to use DATE_FORMAT(); another that's simpler is to add zero:

mysqgl> SELECT dt,
-> DATE_FORMAT(dt, "%Y%m%d%H%i%s "),

-> dt+0

-> FROM datetime_val;
Fo e Fem +
| dt | DATE_FORMAT(dt, "%Y%m%d%H%i%s") | dt+0 |
TS Ry SRy Sy SRS S e e +
1970-01-01 00:00:00	19700101000000	19700101000000
1987-03-05 12:30:15	19870305123015	19870305123015
1999-12-31 09:00:00] 19991231090000	19991231090000	
2000-06-04 15:45:30	20000604154530	20000604154530
TS Ry SRy Sy SRS S e e +

See Recipe 5.3 for more information about rewriting temporal values in whatever format you like.

Chapter 6. Sorting Query Results

Section 6.1. Introduction

Section 6.2. Using ORDER BY to Sort Query Results

Section 6.3. Sorting Subsets of a Table

Section 6.4. Sorting Expression Results

Section 6.5. Displaying One Set of Values While Sorting by Another

Section 6.6. Sorting and NULL Values

Section 6.7. Controlling Case Sensitivity of String Sorts

Section 6.8. Date-Based Sorting

Section 6.9. Sorting by Calendar Day

Section 6.10. Sorting by Day of Week

Section 6.11. Sorting by Time of Day

Section 6.12. Sorting Using Substrings of Column Values

Section 6.13. Sorting by Fixed-Length Substrings

Section 6.14. Sorting by Variable-Length Substrings

Section 6.15. Sorting Hostnames in Domain Order

Section 6.16. Sorting Dotted-Quad IP Values in Numeric Order

Section 6.17. Floating Specific VValues to the Head or Tail of the Sort Order

Section 6.18. Sorting in User-Defined Orders

Section 6.19. Sorting ENUM Values

6.1 Introduction

This chapter covers sorting, an operation that is extremely important for controlling how MySQL displays results
from SELECT statements. Sorting is performed by adding an ORDER BY clause to a query. Without such a clause,
MySQL is free to return rows in any order, so sorting helps bring order to disorder and make query results easier to
examine and understand. (Sorting also is performed implicitly when you use a GROUP BY clause, as discussed in

Recipe 7.14.)

One of the tables used for quite a few examples in this chapter is driver_log, a table that contains columns for
recording daily mileage logs for a set of truck drivers:

mysqgl> SELECT * FROM driver_log;

T — S T TR
rec_id | name | trav_date
Fom o —_—— o
1] Ben | 2001-11-30
2 | Suzi | 2001-11-29
3 | Henry | 2001-11-29
4 | Henry | 2001-11-27
5 | Ben | 2001-11-29
6 | Henry | 2001-11-26
7 | Suzi]| 2001-12-02
8 | Henry | 2001-12-01
9 | Ben | 2001-12-02
10 | Henry | 2001-11-30
Fom Fom o

+
I

=+
I
I
I
I
I
I
I
I
I
I

=+

Many other examples use the mai I table (first seen in earlier chapters):

mysqgl> SELECT * FROM mail;

2001-05-11
2001-05-12
2001-05-12
2001-05-13
2001-05-14
2001-05-14
2001-05-14
2001-05-14
2001-05-15
2001-05-15
2001-05-15
2001-05-15
2001-05-16
2001-05-16
2001-05-17
2001-05-19

10:15:08
12:48:13
15:02:49
13:59:18
09:31:37
11:52:17
14:42:21
17:03:01
07:17:48
08:50:57
10:25:52
17:35:31
09:00:28
23:04:19
12:49:23
22:21:51

F ———————— ——————— — | —

barb
tricia
phil
barb
gene
phil
barb
tricia
gene
phil
gene
gene
gene
phil
phil
gene

F ——————————————— — | —

saturn
mars
mars
saturn
venus
mars
venus
saturn
mars
venus
mars
saturn
venus
venus
mars
saturn

F ———————— ——————— — | —

tricia
gene
phil
tricia
barb
tricia
barb
phil
gene
phil
tricia
gene
barb
barb
tricia
gene

F ——————————————— — | —

mars
venus
saturn
venus
mars
saturn
venus
venus
saturn
venus
saturn
mars
mars
venus
saturn
venus

F ——————————————— — | —

58274 |
194925 |
1048 |
271 |
2291 |
5781 |
98151 |
2394482 |
3824 |
978 |
998532 |
3856 |
613 |
10294 |
873 |
23992 |

Other tables are used occasionally as well. You can create most of them with the scripts found in the tables
directory of the recipes distribution. The baseballl directory contains instructions for creating the tables used in
the examples relating to the baseballl.com baseball database.

6.2 Using ORDER BY to Sort Query Results
6.2.1 Problem

Output from a query doesn't come out in the order you want.

6.2.2 Solution

Add an ORDER BY clause to the query.

6.2.3 Discussion

The contents of the driver_log and mai I tables shown in the chapter introduction are disorganized and difficult to
make any sense of. The exception is that the values in the id and t columns are in order, but that's just
coincidental. Rows do tend to be returned from a table in the order they were originally inserted, but only until the
table is subjected to delete and update operations. Rows inserted after that are likely to be returned in the middle of
the result set somewhere. Many MySQL users notice this disturbance in row retrieval order, which leads them to
ask, "How can | store rows in my table so they come out in a particular order when | retrieve them?" The answer to
this question is that it's the wrong question. Storing rows is the server's job and you should let the server do it.
(Besides, even if you could specify storage order, how would that help you if you wanted to see results sorted in
different orders at different times?)

When you select records, they're pulled out of the database and returned in whatever order the server happens to
use. This may change, even for queries that don't sort rows, depending on which index the server happens to use
when it executes a query, because the index can affect the retrieval order. Even if your rows appear to come out in
the proper order naturally, a relational database makes no guarantee about the order in which it returns rows—
unless you tell it how. To arrange the rows from a query result into a specific order, sort them by adding an ORDER
BY clause to your SELECT statement. Without ORDER BY, you may find that the retrieval order changes when you
modify the contents of your table. With an ORDER BY clause, MySQL will always sort rows the way you indicate.

ORDER BY has the following general characteristics:

e You can sort using a single column of values or multiple columns
e You can sort any column in either ascending order (the default) or descending order
e You can refer to sort columns by name, by their position within the output column list, or by using an alias

This section shows some basic sorting techniques, and the following sections illustrate how to perform more
complex sorts. Paradoxically, you can even use ORDER BY to disorder a result set, which is useful for randomizing
the rows, or (in conjunction with LiImMIT) for picking a row at random from a result set. Those uses for ORDER BY are
described in Chapter 13.

6.2.4 Naming the Sort Columns and Specifying Sorting Direction

The following set of examples demonstrates how to sort on a single column or multiple columns and how to sort in
ascending or descending order. The examples select the rows in the driver_log table but sort them in different
orders so that you can compare the effect of the different ORDER BY clauses.

This query produces a single-column sort using the driver name:

mysqgl> SELECT * FROM driver_log ORDER BY name;

Fom——_—— - o —_—— o o ——_—— +
| rec_id | name | trav_date | miles |
S T — Fomm——— TR . Fom——— +
1] Ben	2001-11-30	152	
5] Ben	2001-11-29	131	
9	Ben	2001-12-02	79
3	Henry	2001-11-29	300
4	Henry	2001-11-27	96
6	Henry	2001-11-26	115
8	Henry	2001-12-01	197
10	Henry	2001-11-30	203
2	Suzi	2001-11-29	391
7	Suzi	2001-12-02	502
S T — Fomm——— TR - Fom——— +

The default sort direction is ascending. You can make the direction for an ascending sort explicit by adding Asc
after the sorted column's name:

SELECT * FROM driver_log ORDER BY name ASC;

The opposite (or reverse) of ascending order is descending order, specified by adding DESC after the sorted
column's name:

mysqgl> SELECT * FROM driver_log ORDER BY name DESC;

Fom—— Fo—— o F +
| rec_id | name | trav_date | miles |
Fom o — —— Fom—_—— Fom e Fem—_—— +
2] Suzi	2001-11-29	391	
7	Suzi	2001-12-02	502
3	Henry	2001-11-29	300
4	Henry	2001-11-27	96
6	Henry	2001-11-26	115
8	Henry	2001-12-01	197
10	Henry	2001-11-30	203
1] Ben	2001-11-30	152	
5	Ben	2001-11-29	131
9	Ben	2001-12-02	79
Fom—_—— Fo—_—— Fom Fom——_—— +

If you closely examine the output from the queries just shown, you'll notice that although the rows are sorted by
name, the rows for any given name aren't in any special order (The trav_date values aren't in date order for
Henry or Ben, for example.) That's because MySQL doesn't sort something unless you tell it to:

e The overall order of rows returned by a query is indeterminate unless you specify an ORDER BY clause.
e Inthe same way, within a group of rows that sort together based on the values in a given column, the order
of values in other columns also is indeterminate unless you name them in the ORDER BY clause.

To more fully control output order, specify a multiple-column sort by listing each column to use for sorting,
separated by commas. The following query sorts in ascending order by name and by trav_date within the rows for
each name:

mysqgl> SELECT * FROM driver_log ORDER BY name, trav_date;

T — S T TR R — +
| rec_id | name | trav_date | miles |
Fom—— Fo—— o Fo——_ +
5	Ben	2001-11-29	131
1	Ben	2001-11-30	152
9	Ben	2001-12-02	79
6	Henry	2001-11-26	115
4	Henry	2001-11-27	96
3	Henry	2001-11-29	300
10	Henry	2001-11-30	203
8	Henry	2001-12-01	197
2	Suzi	2001-11-29	391
7	Suzi	2001-12-02	502
Fom o — —— Fom—_—— Fom e Fom—— +

Multiple-column sorts can be descending as well, but DESC must be specified after each column name to perform a
fully descending sort:

mysql> SELECT * FROM driver_log ORDER BY name DESC, trav_date DESC;

Fommm— Fom———— S Fom——— +
| rec_id | name | trav_date | miles |
Fom—— o ——_—— o o ——_—— +
7	Suzi	2001-12-02	502
2	Suzi	2001-11-29	391
8	Henry	2001-12-01	197
10	Henry	2001-11-30	203
3	Henry	2001-11-29	300
4	Henry	2001-11-27	96
6	Henry	2001-11-26	115
9	Ben	2001-12-02	79
1	Ben	2001-11-30	152
5	Ben	2001-11-29	131
Fom Fomm——— Fm Fom +

Multiple-column ORDER BY clauses can perform mixed-order sorting where some columns are sorted in ascending
order and others in descending order. The following query sorts by name in descending order, then by trav_date
in ascending order for each name:

mysqgl> SELECT * FROM driver_log ORDER BY name DESC, trav_date;
o —_—— o —— o T +
| rec_id | name | trav_date | miles |
Fo—_—— Foe—— e F +
| 2] Suzi | 2001-11-29 | 391 |
| 7 | Suzi | 2001-12-02 | 502 |

=
OFrRPUITOO WO

| Henry | 2001-11-26
| Henry | 2001-11-27
| Henry | 2001-11-29
| Henry | 2001-11-30
| Henry | 2001-12-01
| Ben | 2001-11-29
| Ben | 2001-11-30
| Ben | 2001-12-02
o —_—— o

 ————————

Sidebar 1. Should You Sort Query Results
Yourself?

If you're issuing a SELECT query from within one of your own programs, you can retrieve an unsorted
result set into a data structure, then sort the data structure using your programming language. But why
reinvent the wheel? The MySQL server is built to sort efficiently, and you may as well let it do its job.

A possible exception to this principle occurs when you need to sort a set of rows several different
ways. In this case, rather than issuing several queries that differ only in the ORDER BY clause, it might be
faster to retrieve the records once, and resort them as necessary within your program.

6.2.5 More Ways to Refer to Sort Columns

The ORDER BY clauses in the queries shown thus far refer to the sorted columns by name. You can also name the
columns by their positions within the output column list or by using aliases. Positions within the output list begin
with 1. The following query sorts results by the third output column, miles:

mysql> SELECT name, trav_date, miles FROM driver_log ORDER BY 3;

If an output column has an alias, you can refer to the alias in the ORDER BY clause:

mysqgl> SELECT name, trav_date, miles AS distance FROM driver_log

2001-12-02
2001-11-27
2001-11-26
2001-11-29
2001-11-30
2001-12-01
2001-11-30
2001-11-29
2001-11-29
2001-12-02

-> ORDER BY distance;
Fom—— Fom e — Fom e —— — +

| distance |

trav_date

o o S +
Ben	2001-12-02	79
Henry	2001-11-27	9
Henry	2001-11-26	115
Ben	2001-11-29	131
Ben	2001-11-30	152
Henry	2001-12-01	197
Henry	2001-11-30	203
Henry	2001-11-29	300
Suzi	2001-11-29	391
Suzi	2001-12-02	502
o e o +

Aliases have an advantage over positionally specified columns in ORDER BY clause. If you use positions for sorting,
but then revise the query to change the output column list, you may need to revise the position numbers in the
ORDER BY clause as well. If you use aliases, this is unnecessary. (But note that some database engines do not
support use of aliases in ORDER BY clauses, so this feature is not portable.)

Columns specified by positions or by aliases can be sorted in either ascending or descending order, just like named
columns:

mysqgl> SELECT name, trav_date, miles FROM driver_log ORDER BY 3 DESC;

Foe—— o — —— Foe—— +
| name | trav_date | miles |
Fom—— Fom e — Fom—— +
Suzi	2001-12-02	502
Suzi	2001-11-29	391
Henry	2001-11-29	300
Henry	2001-11-30	203
Henry	2001-12-01	197
Ben	2001-11-30	152
Ben	2001-11-29	131
Henry	2001-11-26	115
Henry	2001-11-27	96
Ben	2001-12-02	79
Fo—_—— Fom Fo—_—— +

6.3 Sorting Subsets of a Table
6.3.1 Problem

You don't want to sort an entire table, just part of it.
6.3.2 Solution

Add a WHERE clause that selects only the records you want to see.

6.3.3 Discussion

ORDER BY doesn't care how many rows there are; it sorts whatever rows the query returns. If you don't want to sort
an entire table, add a WHERE clause to indicate which rows to select. For example, to sort the records for just one of
the drivers, do something like this:

mysqgl> SELECT trav_date, miles FROM driver_log WHERE name = “Henry~
-> ORDER BY trav_date;

o e —— +
| trav_date | miles |
o o +
2001-11-26	115
2001-11-27	96
2001-11-29	300
2001-11-30	203
2001-12-01	197
Fmm o ——_—— +

Columns named in the ORDER BY clause need not be the same as those in the WHERE clause, as the preceding query
demonstrates. The ORDER BY columns need not even be the ones you display, but that's covered later (Recipe 6.5).

6.4 Sorting Expression Results
6.4.1 Problem

You want to sort a query result based on values calculated from a column, rather than using the values actually
stored in the column.

6.4.2 Solution

Put the expression that calculates the values in the ORDER BY clause. For older versions of MySQL that don't
support ORDER BY expressions, use a workaround.

6.4.3 Discussion

One of the columns in the mai I table shows how large each mail message is, in bytes:

mysqgl> SELECT * FROM mail;

Sy R Fommmme o S R Fommmmeem Fommmme o +
| t | srcuser | srchost | dstuser | dsthost | size |
Fo Fom e —_——_—— Fom e —_——— Fom e —_——_—— - Fom e —_——_—— Fom e —_——— +
2001-05-11 10:15:08	barb	saturn	tricia	mars	58274
2001-05-12 12:48:13	tricia	mars	gene	venus	194925
2001-05-12 15:02:49	phil	mars	phil	saturn	1048

| barb | saturn | tricia | venus | 271 |

| 2001-05-13 13:59:18

Suppose you want to retrieve records for "big" mail messages (defined as those larger than 50,000 bytes), but you
want them to be displayed and sorted by sizes in terms of kilobytes, not bytes. In this case, the values to sort are

calculated by an expression. You can use ORDER BY to sort expression results, although the way you write the query
may depend on your version of MySQL.

Prior to MySQL 3.23.2, expressions in ORDER BY clauses are not allowed. To work around this problem, specify the
expression in the output column list and either refer to it by position or give it an alias and refer to the alias:

[wondering about the +1023 in the FLOOR () expression? That's there so that S | Z€ values group to the nearest upper boundary of the 1024-byte categories. Without it,
the values group by lower boundaries (for example, a 2047-byte message would be reported as having a size of 1 kilobyte rather than 2). This technique is discussed in more detail in
Recipe 7.13.

mysql> SELECT t, srcuser, FLOOR((size+1023)/1024)
-> FROM mail WHERE size > 50000

-> ORDER BY 3;

2001-05-11 10:15:08
2001-05-14 14:42:21
2001-05-12 12:48:13
2001-05-15 10:25:52
2001-05-14 17:03:01

————————— e+
srcuser | FLOOR((size+1023)/1024) |
————————— e+
barb | 57 |
barb | 96 |
tricia | 191 |
gene | 976 |
tricia | 2339 |
————————— Ry

mysql> SELECT t, srcuser, FLOOR((size+1023)/1024) AS Kkilobytes
-> FROM mail WHERE size > 50000
-> ORDER BY Kkilobytes;

2001-05-11 10:15:08
2001-05-14 14:42:21
2001-05-12 12:48:13
2001-05-15 10:25:52
2001-05-14 17:03:01

=+

F —— ——— e —

————————— Fom et
srcuser | kilobytes |
--------- Fom e+
barb | 57 |
barb | 96 |
tricia | 191 |
gene | 976 |
tricia | 2339 |
--------- Fommmmm et

These techniques work for MySQL 3.23.2 and up, too, but you also have the additional option of putting the
expression directly in the ORDER BY clause:

mysql> SELECT t, srcuser, FLOOR((size+1023)/1024)
-> FROM mail WHERE size > 50000
-> ORDER BY FLOOR((size+1023)/1024);

2001-05-11 10:15:08
2001-05-14 14:42:21
2001-05-12 12:48:13
2001-05-15 10:25:52
2001-05-14 17:03:01

+

o —— —— — o —

————————— Ry
srcuser | FLOOR((size+1023)/1024) |
————————— e+
barb | 57 |
barb | 96 |
tricia | 191 |
gene | 976 |
tricia | 2339 |
————————— Ry

However, even if you can put the expression in the ORDER BY clause, there are at least two reasons you might still
want to use an alias:

o It's easier to write the ORDER BY clause using the alias than by repeating the (rather cumbersome)
expression.
e The alias may be useful for display purposes, to provide a more meaningful column label.

The same restriction on expressions in ORDER BY clauses applies to GROUP BY (which we'll get to in Chapter 7), and
the same workarounds apply as well. If your version of MySQL is older than 3.23.2, be sure to remember these
workarounds. Many of the queries in the rest of this book use expressions in ORDER BY or GROUP BY clauses; to use
them with an older MySQL server, you'll need to rewrite them using the techniques just described.

6.5 Displaying One Set of Values While Sorting by Another
6.5.1 Problem

You want to sort a result set using values that you're not selecting.

6.5.2 Solution

That's not a problem. You can use columns in the ORDER BY clause that don't appear in the column output list.
6.5.3 Discussion

ORDER BY is not limited to sorting only those columns named in the column output list. It can sort using values that
are "hidden" (that is, not displayed in the query output). This technique is commonly used when you have values
that can be represented different ways and you want to display one type of value but sort by another. For example,
you may want to display mail message sizes not in terms of bytes, but as strings such as 103k for 103 kilobytes.
You can convert a byte count to that kind of value using this expression:

CONCAT (FLOOR((size+1023)7/1024) , "K*)

However, such values are strings, so they sort lexically, not numerically. If you use them for sorting, a value such
as 96K sorts after 2339k, even though it represents a smaller number:

mysqgl> SELECT t, srcuser,
-> CONCAT(FLOOR((si1ze+1023)/1024),"K") AS size_in_K
-> FROM mail WHERE size > 50000
-> ORDER BY size_ in_K;

+ +
I I
+ +
2001-05-12 12:48:13 | tricia |
2001-05-14 17:03:01 | tricia | 2339K

I I

I I

I I

+ +

2001-05-14 14:42:21 barb

|

| 2001-05-11 10:15:08 | barb
I

| 2001-05-15 10:25:52

To achieve the desired output order, display the string, but use the actual numeric size for sorting:

mysqgl> SELECT t, srcuser,
-> CONCAT(FLOOR((size+1023)/1024),"K") AS size_in_K
-> FROM mail WHERE size > 50000
-> ORDER BY size;

S Fomm - TR - +
| t | srcuser | size_in_K |
e Fom o - +
2001-05-11 10:15:08	barb	57K
2001-05-14 14:42:21	barb	96K
2001-05-12 12:48:13	tricia	191K
2001-05-15 10:25:52	gene	976K
2001-05-14 17:03:01	tricia	2339K
Ry S o +

Displaying values as strings but sorting them as numbers also can bail you out of some otherwise difficult
situations. Members of sports teams typically are assigned a jersey number, which normally you might think
should be stored using a numeric column. Not so fast! Some players like to have a jersey number of zero (0), and
some like double-zero (00). If a team happens to have players with both numbers, you cannot represent them using
a numeric column, because both values will be treated as the same number. The way out of the problem is to store
jersey numbers as strings:

CREATE TABLE roster

(
name CHAR(30), # player name

jersey _num CHAR(3) # jersey number

Then the jersey numbers will display the same way you enter them, and 0 and 00 will be treated as distinct values.
Unfortunately, although representing numbers as strings solves the problem of distinguishing 0 and 00, it
introduces a different problem. Suppose a team comprises the following players:

mysqgl> SELECT name, jersey_num FROM roster;

(o
)
=
%)
)

N
>
c
3

I

I

| Elizabeth
| Nancy

| Jean

I

The problem occurs when you try to sort the team members by jersey number. If those numbers are stored as
strings, they'll sort lexically, and lexical order often differs from numeric order. That's certainly true for the team in
question:

mysqgl> SELECT name, jersey_num FROM roster ORDER BY jersey_num;

>
o
3
)
+ -+
-
)
=
%)
)
i
S
c
3

Ella
Nancy

The values 100 and 8 are out of place. But that's easily solved. Display the string values, but use the numeric
values for sorting. To accomplish this, add zero to the jersey num values to force a string-to-number conversion:

mysql> SELECT name, jersey num FROM roster ORDER BY jersey num+O;

Sherry

The technique of displaying one value but sorting by another is also useful when you want to display composite
values that are formed from multiple columns but that don't sort the way you want. For example, the mail table
lists message senders using separate srcuser and srchost values. If you want to display message senders from
the mai I table as email addresses in srcuser@srchost format with the username first, you can construct those

values using the following expression:

CONCAT(srcuser,"@" ,srchost)

However, those values are no good for sorting if you want to treat the hostname as more significant than the
username. Instead, sort the results using the underlying column values rather than the displayed composite values:

mysqgl> SELECT t, CONCAT(srcuser,"@",srchost) AS sender, size
-> FROM mail WHERE size > 50000
-> ORDER BY srchost, srcuser;

S S Fomm - +
| t | sender | size |
Ry o o — +
2001-05-15 10:25:52	gene@mars	998532
2001-05-12 12:48:13	tricia@mars	194925
2001-05-11 10:15:08	barb@saturn	58274
2001-05-14 17:03:01	tricia@saturn	2394482
2001-05-14 14:42:21	barb@venus	98151
Ry o o +

The same idea commonly is applied to sorting people's names. Suppose you have a table names that contains last
and first names. To display records sorted by last name first, the query is straightforward when the columns are
displayed separately:

mysgl> SELECT last_name, first_name FROM name
-> ORDER BY last_name, first_name;

Fom o +
| last_name | First_name |
TR S TR - +
Blue	Vida
Brown	Kevin
Gray	Pete
White	Devon
White	Rondell
Fom e TR - +

If instead you want to display each name as a single string composed of the first name, a space, and the last name,
you can begin the query like this:

SELECT CONCAT(First_name,” °,last name) AS full_name FROM name ...

But then how do you sort the names so they come out in the last name order? The answer is to display the
composite names, but refer to the constituent values in the ORDER BY clause:

mysql> SELECT CONCAT(first_name," ",last name) AS full_name

-> FROM name
-> ORDER BY last _name, first name;
o +
| full_name |
Fom e +
Vida Blue
Kevin Brown

Devon White

| |
| |
| Pete Gray |
| |
| Rondell White |

If you want to write queries that sort on non-displayed values, you'll have problems if the sort columns are
expressions and you're using an older version of MySQL. This is because expressions aren't allowed in ORDER BY
clauses until MySQL 3.23.2 (as discussed in Recipe 6.4).

The solution is to "unhide" the expression—add it as an extra output column, and then refer to it by position or by
using an alias. For example, to write a query that lists names from the names table with the longest names first, you
might do this in MySQL 3.23.2 and up:

mysql> SELECT CONCAT(first_name," ",last name) AS name
-> FROM names
-> ORDER BY LENGTH(CONCAT(First_name," ",last name)) DESC;

| Rondell White |
| Kevin Brown |
| Devon White |
| Vida Blue |
| Pete Gray |

To rewrite this query for older versions of MySQL, put the expression in the output column list and use an alias to
sort it:

mysqgl> SELECT CONCAT(first_name,* *,last _name) AS name,
-> LENGTH(CONCAT(Ffirst_name," ",last_name)) AS len
-> FROM names
-> ORDER BY len DESC;

o o +
| name | len |
e Fom——_—— +
Rondell White	13
Kevin Brown	11
Devon White	11
Vida Blue	9
Pete Gray	9
T Fom——— +

Or else refer to the additional output column by position:

mysql> SELECT CONCAT(first_name," ",last name) AS name,
-> LENGTH(CONCAT(First_name," ",last _name)) AS len
-> FROM names
-> ORDER BY 2 DESC;

o Fom——_—— +
| name | len |
T Fom——— +
Rondell White	13
Kevin Brown	11
Devon White	11
Vida Blue	9
Pete Gray	9]
oo - +

Whichever workaround you use, the output will of course contain a column that's there only for sorting purposes
and that you really aren't interested in displaying. If you're running the query from the mysql program, that's
unfortunate, but there's nothing you can do about the additional output. In your own programs, the extra output
column is no problem. It'll be returned in the result set, but you can ignore it. Here's a Python example that
demonstrates this. It runs the query, displays the names, and discards the name lengths:

cursor = conn.cursor (MySQLdb.cursors.DictCursor)
cursor.execute ("""

SELECT CONCAT(First_name,” ",last _name) AS full_name,

LENGTH(CONCAT(first_name,” *,last name)) AS len

FROM name

ORDER BY len DESC
for row in cursor.fetchall ():

print row["full_name™] # print name, ignore length

cursor.close ()

6.6 Sorting and NULL Values
6.6.1 Problem

You want to sort a column that may contain NULL values.
6.6.2 Solution

The placement of NULL values in a sorted list has changed over time and depends on your version of MySQL. If
NULL values don't come out in the desired position within the sort order, trick them into appearing where you want.

6.6.3 Discussion

When a sorted column contains NULL values, MySQL puts them all together in the sort order. It may seem a bit odd
that NULL values are grouped this way, given that (as the following query shows) they are not considered equal in
comparisons:

mysql> SELECT NULL = NULL;

o +
| NULL = NULL |
o +
I NULL |
o= +

On the other hand, NULL values conceptually do seem more similar to each other than to non-NULL values, and
there's no good way to distinguish one NULL from another, anyway. However, although NULL values group
together, they may be placed at the beginning or end of the sort order, depending on your version of MySQL. Prior
to MySQL 4.0.2, NULL values sort to the beginning of the order (or at the end, if you specify DESC). From 4.0.2 on,
MySQL sorts NULL values according to the ANSI SQL specification, and thus always places them first in the sort
order, regardless of whether or not you specify DESC.

Despite these differences, if you want NULL values at one end or the other of the sort order, you can force them to
be placed where you want no matter which version of MySQL you're using. Suppose you have a table t with the
following contents:

mysqgl> SELECT val FROM t;

Normally, sorting puts the NULL values at the beginning:

mysqgl> SELECT val FROM t ORDER BY val;

| NULL |
| NULL |

To put them at the end instead, introduce an extra ORDER BY column that maps NULL values to a higher value than
non-NULL values:

mysql> SELECT val FROM t ORDER BY IF(val 1S NULL,1,0), val;

That works for DESC sorts as well:

mysqgl> SELECT val FROM t ORDER BY IF(val IS NULL,1,0), val DESC;

If you find MySQL putting NULL values at the end of the sort order and you want them at the beginning, use the
same technique, but reverse the second and third arguments of the 1F() function to map NULL values to a lower
value than non-NULL values:

IF(val 1S NULL,0,1)

6.7 Controlling Case Sensitivity of String Sorts
6.7.1 Problem

String sorts are case sensitive when you don't want them to be, or vice versa.

6.7.2 Solution
Alter the case sensitivity of the sorted values.
6.7.3 Discussion

Chapter 4 discusses the fact that binary strings are case sensitive in comparisons, whereas non-binary strings are
not. This property carries over into string sorting as well: ORDER BY produces lexical sorts that are case sensitive for
binary strings and not case sensitive for non-binary strings. The following table textblob_val contains a TEXT
column tstr and a BLOB column bstr that serve to demonstrate this:

mysqgl> SELECT * FROM textblob_val;

Both columns contain the same values. But they produce different sort results, because TEXT columns are not case
sensitive and BLOB columns are:

mysql> SELECT tstr FROM textblob_val ORDER BY tstr;
T +

| tstr |
o —— +

[}
[}
o

Fom +

mysql> SELECT bstr FROM textblob_val ORDER BY bstr;
Fom——— +

| bstr |
o +

|
|
| aaa |
|

To control case sensitivity in ORDER BY clauses, use the techniques discussed in Chapter 4 for affecting string
comparisons. To perform a case-sensitive sort for strings that are not case sensitive (such as those in the tstr
column) cast the sort column to binary-string form using the BINARY keyword:

mysqgl> SELECT tstr FROM textblob_val ORDER BY BINARY tstr;

Another possibility is to convert the output column to binary and sort that:

mysql> SELECT BINARY tstr FROM textblob_val ORDER BY 1;

N +
| BINARY tstr |
N +
| AAA |
| BBB |
| aaa |
| bbb |
N +

You can also use the CAST() function that is available as of MySQL 4.0.2:

mysql> SELECT tstr FROM textblob _val ORDER BY CAST(tstr AS BINARY);

The complementary operation is to sort binary strings in non-case-sensitive fashion. To do this, convert the values
to uppercase or lowercase with UPPER() or LOWER():

mysqgl> SELECT bstr FROM textblob_val ORDER BY UPPER(bstr);

Alternatively, you can convert the output column and sort that—but doing so affects the displayed values, possibly
in an undesirable way:

mysql> SELECT UPPER(bstr) FROM textblob_val ORDER BY 1;

6.8 Date-Based Sorting

6.8.1 Problem

You want to sort in temporal order.

6.8.2 Solution

Sort using a date or time column type, ignoring parts of the values that are irrelevant if necessary.

6.8.3 Discussion

Many types of information include date or time information and it's very often necessary to sort results in temporal

order. MySQL knows how to sort temporal column types, so there's no special trick to ordering values in DATE,
DATETIME, TIME, or TIMESTAMP columns. Begin with a table that contains values for each of those types:

mysqgl> SELECT * FROM temporal_val;

o Sy o o +
| d | dt | t | ts |
o ey o ey +
1970-01-01	1884-01-01 12:00:00	13:00:00] 19800101020000	
1999-01-01	1860-01-01 12:00:00	19:00:00] 20210101030000	
1981-01-01	1871-01-01 12:00:00	03:00:00] 19750101040000	
1964-01-01	1899-01-01 12:00:00	01:00:00	19850101050000
o ey o ey +

Using an ORDER BY clause with any of these columns sorts the values into the appropriate order:

mysqgl> SELECT * FROM temporal_val ORDER BY d;

1964-01-01	1899-01-01 12:00:00	01:00:00	19850101050000
1970-01-01	1884-01-01 12:00:00	13:00:00	19800101020000
1981-01-01	1871-01-01 12:00:00	03:00:00	19750101040000
1999-01-01	1860-01-01 12:00:00	19:00:00	20210101030000

Fm Ry o o +
mysqgl> SELECT * FROM temporal_val ORDER BY dt;

TR . vy L T —— S +
| d | dt | t | ts |
o e o —— o +

1999-01-01	1860-01-01 12:00:00	19:00:00	20210101030000
1981-01-01	1871-01-01 12:00:00	03:00:00	19750101040000
1970-01-01	1884-01-01 12:00:00	13:00:00	19800101020000
1964-01-01	1899-01-01 12:00:00	01:00:00	19850101050000

o e o —— o +
mysql> SELECT * FROM temporal_val ORDER BY t
e e Fomm e e +

e o o e +
1964-01-01	1899-01-01 12:00:00	01:00:00	19850101050000
1981-01-01	1871-01-01 12:00:00	03:00:00] 19750101040000	
1970-01-01	1884-01-01 12:00:00	13:00:00] 19800101020000	
1999-01-01	1860-01-01 12:00:00	19:00:00	20210101030000
e o o e +
mysqgl> SELECT * FROM temporal_val ORDER BY ts;

03:00:00 | 19750101040000 |
13:00:00 | 19800101020000 |
01:00:00 | 19850101050000 |
19:00:00 | 20210101030000 |
---------- S

| 1981-01-01 | 1871-01-01 12:00:00
| 1970-01-01 | 1884-01-01 12:00:00
| 1964-01-01 | 1899-01-01 12:00:00
| 1999-01-01 | 1860-01-01 12:00:00
o ey

F —— —— o —

Sometimes a temporal sort uses only part of a date or time column. In that case, you can bust out the part or parts
you need and use them to order the results. Some examples of this are given in the next few sections.

6.9 Sorting by Calendar Day

6.9.1 Problem

You want to sort by day of the calendar year.

6.9.2 Solution

Sort using the month and day of a date, ignoring the year.

6.9.3 Discussion

Sorting in calendar order differs from sorting by date. You ignore the year part of the dates and sort using only the

month and day to order records in terms of where they fall during the calendar year. Suppose you have an event
table that looks like this when values are ordered by actual date of occurrence:

mysql> SELECT date, description FROM event ORDER BY date;

TR - T — +
| date | description |
o e +
1215-06-15	Signing of the Magna Carta
1732-02-22	George Washington®s birthday
1776-07-14	Bastille Day
1789-07-04	US Independence Day
1809-02-12	Abraham Lincoln®s birthday
1919-06-28	Signing of the Treaty of Versailles
1944-06-06	D-Day at Normandy Beaches
1957-10-04	Sputnik launch date
1958-01-31	Explorer 1 launch date
1989-11-09	Opening of the Berlin Wall
Fmm Ty +

To put these items in calendar order, sort them by month, then by day within month:

mysql> SELECT date, description FROM event
-> ORDER BY MONTH(date), DAYOFMONTH(date);

o e +
| date | description |
TR - T — +
1958-01-31	Explorer 1 launch date
1809-02-12	Abraham Lincoln®s birthday
1732-02-22	George Washington®s birthday
1944-06-06	D-Day at Normandy Beaches
1215-06-15	Signing of the Magna Carta
1919-06-28	Signing of the Treaty of Versailles
1789-07-04	US Independence Day
1776-07-14	Bastille Day
1957-10-04	Sputnik launch date
1989-11-09	Opening of the Berlin Wall
e e +

MySQL also has a DAYOFYEAR() function that you might think would be useful for calendar day sorting:

mysql> SELECT date, description FROM event ORDER BY DAYOFYEAR(date);

Fmm e +
| date | description |
TR - o +
1958-01-31	Explorer 1 launch date
1809-02-12	Abraham Lincoln®s birthday
1732-02-22	George Washington®s birthday
1944-06-06	D-Day at Normandy Beaches
1215-06-15	Signing of the Magna Carta
1919-06-28	Signing of the Treaty of Versailles
1789-07-04	US Independence Day
1776-07-14	Bastille Day
1957-10-04	Sputnik launch date
1989-11-09	Opening of the Berlin Wall
o e +

That appears to work, but only because the table doesn't have records in it that expose a problem with the use of
DAYOFYEAR(): It can generate the same value for different calendar days. For example, February 29 of leap years
and March 1 of non-leap years appear to be the same day:

mysql> SELECT DAYOFYEAR("1996-02-29"), DAYOFYEAR("1997-03-01");

S S +
| DAYOFYEAR("1996-02-29%) | DAYOFYEAR("1997-03-01") |
e S +
I 60 | 60 |
ey o +

This property means that DAYOFYEAR() won't necessarily produce correct results for calendar sorting. It can group
dates together that actually occur on different calendar days.

If a table represents dates using separate year, month, and day columns, calendar sorting requires no date-part
extraction. Just sort the relevant columns directly. For example, the master ballplayer table from the baseballl.com
database distribution represents names and birth dates as follows:

mysql> SELECT lastname, firstname, birthyear, birthmonth, birthday
-> FROM master;

o o o o — o —— +
| lTastname | firstname | birthyear | birthmonth | birthday |
e o oo o o +
AARON	HANK	1934	2] 5	
AARON	TOMMIE	1939	8	5
AASE	DON	1954	9	8
ABAD	ANDY	1972	8	25
ABADIE	JOHN	1854	11	4]
ABBATICCHIO	ED	1877	4	15
ABBEY	BERT	1869	11	29
ABBEY	CHARLIE	1866	10	14

To sort those records in calendar order, use the birthmonth and birthday columns. Of course, that will leave
records unsorted within any given day, so you may also want to add additional sort columns. The following query
selects players with known birthdays, sorts them by calendar order, and by name for each calendar day:

mysql> SELECT lastname, firstname, birthyear, birthmonth, birthday
-> FROM master
-> WHERE birthmonth 1S NOT NULL AND birthday 1S NOT NULL
-> ORDER BY birthmonth, birthday, lastname, firstname;

Ry o o o S +
| Tastname | Firstname | birthyear | birthmonth | birthday |
o o o o — o —— +
| ALLEN | ETHAN | 1904 | 1] 1]
| BEIRNE | KEVIN | 1974 | 1] 1]
| BELL | RUDY | 1881 | 1] 1]
| BERTHRONG | HARRY | 1844 | 1] 1]
| BETHEA | BILL | 1942 | 1] 1]
| BISHOP | CHARLIE | 1924 | 1] 1]
| BOBB | RANDY | 1948 | 1] 1]
| BRUCKMILLER | ANDY | 1882 | 1] 1]

For large datasets, sorting using separate date part columns can be much faster than sorts based on extracting
pieces of DATE values. There's no overhead for part extraction, but more important, you can index the date part
columns separately—something not possible with a DATE column.

6.10 Sorting by Day of Week
6.10.1 Problem

You want to sort in day-of-week order.

6.10.2 Solution
Use DAYOFWEEK() to convert a date column to its numeric day of week value.
6.10.3 Discussion

Day-of-week sorting is similar to calendar day sorting, except that you use different functions to get at the relevant
ordering values.

You can get the day of the week using DAYNAME(), but that produces strings that sort lexically rather than in day-
of-week order (Sunday, Monday, Tuesday, etc.). Here the technique of displaying one value but sorting by another
is useful (Recipe 6.5). Display day names using DAYNAME(), but sort in day-of-week order using DAYOFWEEK(),
which returns numeric values from 1 to 7 for Sunday through Saturday:

mysql> SELECT DAYNAME(date) AS day, date, description
-> FROM event
-> ORDER BY DAYOFWEEK(date);

o o e +
| day | date | description |
Fom e Fom Ty +
Sunday	1776-07-14	Bastille Day
Sunday	1809-02-12	Abraham Lincoln®s birthday
Monday	1215-06-15	Signing of the Magna Carta
Tuesday	1944-06-06	D-Day at Normandy Beaches
Thursday	1989-11-09	Opening of the Berlin Wall
Friday	1957-10-04	Sputnik launch date
Friday	1958-01-31	Explorer 1 launch date
Friday	1732-02-22	George Washington®s birthday
Saturday	1789-07-04	US Independence Day
Saturday	1919-06-28	Signing of the Treaty of Versailles
Fem e e P +

If you want to sort in day-of-week order, but treat Monday as the first day of the week and Sunday as the last, you
can use a the mob() function to map Monday to 0, Tuesday to 1, ..., Sunday to 6:

mysql> SELECT DAYNAME(date), date, description
-> FROM event
-> ORDER BY MOD(DAYOFWEEK(date) + 5, 7);

o o Ty +
| DAYNAME(date) | date | description |
TR TR - T +
Monday	1215-06-15	Signing of the Magna Carta
Tuesday	1944-06-06	D-Day at Normandy Beaches
Thursday	1989-11-09	Opening of the Berlin Wall
Friday	1957-10-04	Sputnik launch date
Friday	1958-01-31	Explorer 1 launch date
Friday	1732-02-22	George Washington®s birthday
Saturday	1789-07-04	US Independence Day
Saturday	1919-06-28	Signing of the Treaty of Versailles
Sunday	1776-07-14	Bastille Day
Sunday	1809-02-12	Abraham Lincoln®s birthday
oo Fom e o +

The following table shows the DAYOFWEEK() expressions to use for putting any day of the week first in the sort
order:

Day to list first DAYOFWEEK() expression

Sunday DAYOFWEEK (date)

Monday MOD(DAYOFWEEK(date) + 5, 7)
Tuesday MOD(DAYOFWEEK(date) + 4, 7)
Wednesday MOD(DAYOFWEEK(date) + 3, 7)
Thursday MOD(DAYOFWEEK(date) + 2, 7)
Friday MOD(DAYOFWEEK(date) + 1, 7)
Saturday MOD(DAYOFWEEK(date) + 0, 7)

Another function that you can use for day-of-week sorting is WEEKDAY (), although it returns a different set of
values (0 for Monday through 6 for Sunday).

6.11 Sorting by Time of Day

6.11.1 Problem

You want to sort in time-of-day order.

6.11.2 Solution

Pull out the hour, minute, and second from the column that contains the time, and use them for sorting.

6.11.3 Discussion

Time-of-day sorting can be done different ways, depending on your column type. If the values are stored in a TIME

column, just sort them directly. To put DATETIME or TIMESTAMP values in time-of-day order, extract the time parts
and sort them. For example, the mai I table contains DATET IME values, which can be sorted by time of day like this:

mysql> SELECT * FROM mail ORDER BY HOUR(t), MINUTE(t), SECOND(t);

o Fom o ——_ Fo——_— Fo——_— o +
| t | srcuser | srchost | dstuser | dsthost | size |
Fo Fom e ——_—— Fom e —_——— Fom e —_——_—— - Fom e —_——_—— Fom e —_——— +
2001-05-15 07:17:48	gene	mars	gene	saturn	3824
2001-05-15 08:50:57	phil	venus	phil	venus	978
2001-05-16 09:00:28	gene	venus	barb	mars	613
2001-05-14 09:31:37	gene	venus	barb	mars	2291
2001-05-11 10:15:08	barb	saturn	tricia	mars	58274
2001-05-15 10:25:52	gene	mars	tricia	saturn	998532
2001-05-14 11:52:17	phil	mars	tricia	saturn	5781
2001-05-12 12:48:13	tricia	mars	gene	venus	194925

You can also use TIME_TO_SEC(), which strips off the date part and returns the time part as the corresponding
number of seconds:

mysqgl> SELECT * FROM mail ORDER BY TIME_TO_SEC(t);

vy R Fommmmem R Fommmmem Fommmmem +
| t | srcuser | srchost | dstuser | dsthost | size |
Ry P Fom e T o T +
2001-05-15 07:17:48	gene	mars	gene	saturn	3824
2001-05-15 08:50:57	phil	venus	phil	venus	978
2001-05-16 09:00:28	gene	venus	barb	mars	613
2001-05-14 09:31:37	gene	venus	barb	mars	2291
2001-05-11 10:15:08	barb	saturn	tricia	mars	58274
2001-05-15 10:25:52	gene	mars	tricia	saturn	998532
2001-05-14 11:52:17	phil	mars	tricia	saturn	5781
2001-05-12 12:48:13	tricia	mars	gene	venus	194925

6.12 Sorting Using Substrings of Column Values

6.12.1 Problem

You want to sort a set of values using one or more substrings of each value.

6.12.2 Solution

Extract the hunks you want and sort them separately.

6.12.3 Discussion

This is an application of sorting by expression value (Recipe 6.4). If you want to sort records using just a particular
portion of a column's values, extract the substring you need and use it in the ORDER BY clause. This is easiest if the
substrings are at a fixed position and length within the column. For substrings of variable position or length, you

may still be able to use them for sorting if there is some reliable way to identify them. The next several recipes
show how to use substring-extraction to produce specialized sort orders.

6.13 Sorting by Fixed-Length Substrings
6.13.1 Problem

You want to sort using parts of a column that occur at a given position within the column.

6.13.2 Solution

Pull out the parts you need with LEFT(), MID(), or RIGHT() and sort them.

6.13.3 Discussion

Suppose you have a housewares table that acts as a catalog for houseware furnishings, and that items are
identified by 11-character ID values consisting of three subparts: a three-character category abbreviation (such as
DIN for "dining room" or KIT for "kitchen™), a five-digit serial number, and a two-character country code
indicating where the part is manufactured:

mysqgl> SELECT * FROM housewares;

o Ny +
| id | description |
o o +
DIN4AO672US	dining table
KITOO372UK	garbage disposal
KITO1729JP	microwave oven
BEDOOO38SG	bedside lamp
BTHO0485US	shower stall
BTHO0415JP	lavatory
o e +

This is not necessarily a good way to store complex ID values, and later we'll consider how to represent them using
separate columns (Recipe 11.14). But for now, assume that the values must be stored as just shown.

If you want to sort records from this table based on the id values, you'd just use the entire column value:

mysql> SELECT * FROM housewares ORDER BY id;

TR - T +
| id | description |
o e +
BEDOOO38SG	bedside lamp
BTHO0415JP	lavatory
BTHO0485US	shower stall
DIN40672US	dining table
KITOO372UK	garbage disposal
KITO1729JP	microwave oven
Fmm e +

But you might also have a need to sort on any of the three subparts (for example, to sort by country of
manufacture). For that kind of operation, it's helpful to use functions that pull out pieces of a column, such as
LEFT(), MID(), and RIGHT(). These functions can be used to break apart the id values into their three
components:

mysqgl> SELECT id,
-> LEFT(id,3) AS category,
-> MID(id,4,5) AS serial,
-> RIGHT(id,2) AS country
-> FROM housewares;

o o o —_—— o —— +
| id | category | serial | country |
o o o T +
| DIN40O672US | DIN | 40672 | US

|
| KITOO372UK | KIT | 00372 | UK I
| KITO1729JP | KIT | 01729 | JP I

| BEDOO038SG | BED | 00038 | SG I
| BTHO0485US | BTH | 00485 | US I
|

| BTHO0415JP | BTH | 00415 | JP
e o e —_— e +

Any of those fixed-length substrings of the id values can be used for sorting, either alone or in combination. To
sort by product category, extract the category value and use it in the ORDER BY clause:

mysqgl> SELECT * FROM housewares ORDER BY LEFT(id,3);

Fom e — Fm +
| id | description |
o Ny +
BEDOOO38SG	bedside lamp
BTHO0485US	shower stall
BTHO0415JP	lavatory
DIN4O672US	dining table
KITOO372UK	garbage disposal
KITO1729JP	microwave oven
o — —— o +

To sort rows by product serial number, use MID() to extract the middle five characters from the id values,
beginning with the fourth:

mysql> SELECT * FROM housewares ORDER BY MID(id,4,5);

Fm Ry +
| id | description |
TR - o +
BEDOOO38SG	bedside lamp
KITOO372UK	garbage disposal
BTHO0415JP	lavatory
BTHO0485US	shower stall
KITO1729JP	microwave oven
DIN4O672US	dining table
Fm Ry +

This appears to be a numeric sort, but it's actually a string sort, because MID() returns strings. It just so happens
that the lexical and numeric sort order are the same in this case due to the fact that the "numbers™ have leading
zeros to make them all the same length.

To sort by country code, use the rightmost two characters of the id values:

mysql> SELECT * FROM housewares ORDER BY RIGHT(id,2);

o e +
| id | description |
o Ny +
KITO1729JP	microwave oven
BTHO0415JP	lavatory
BEDOOO38SG	bedside lamp
KITOO372UK	garbage disposal
DIN40672US	dining table
BTHO0485US	shower stall
Fm Ry +

You can also sort using combinations of substrings. For example, to sort by country code and serial number, the
query looks like this:

mysql> SELECT * FROM housewares ORDER BY RIGHT(id,2), MID(id,4,5);

o o +
| id | description |
TR . - +
BTHO0415JP	lavatory
KITO1729JP	microwave oven
BEDOOO38SG	bedside lamp
KITOO372UK	garbage disposal
BTHO0485US	shower stall
DIN40672US	dining table
o o +

6.14 Sorting by Variable-Length Substrings

6.14.1 Problem

You want to sort using parts of a column that do not occur at a given position within the column.

6.14.2 Solution

Figure out some way to identify the parts you need so you can extract them; otherwise, you're out of luck.

6.14.3 Discussion

If the substrings that you want to use for sorting vary in length, you need a reliable means of extracting just the part
of the column values that you want. To see how this works, create a housewares?2 table that is like the

housewares table used in the previous section, except that it has no leading zeros in the serial number part of the
id values:

mysql> SELECT * FROM housewares2;

o Ry +
| id | description |
o o +
DIN4AO672US	dining table
KIT372UK	garbage disposal
KIT1729JP	microwave oven
BED38SG	bedside lamp
BTH485US	shower stall
BTH415JP	lavatory
o Ry +

The category and country parts of the id values can be extracted and sorted using LEFT() and RIGHT(), just as
for the housewares table. But now the numeric segments of the values have different lengths and cannot be
extracted and sorted using a simple MiD() call. Instead, use SUBSTRING() to skip over the first three characters
and return the remainder beginning with the fourth character (the first digit):

mysqgl> SELECT id, SUBSTRING(id,4) FROM housewares?2;

e e +
| id | SUBSTRING(id,4) |
e e +
| DINAO672US | 40672US I
| KIT372UK | 372UK I
| KIT17293P | 1729JP I
| BED38SG | 38sG I
| BTH485US | 485US I
| BTH415JP | 415JP I
o o +

Then take everything but the rightmost two columns. One way to do this is as follows:

mysql> SELECT id, LEFT(SUBSTRING(id,4),LENGTH(SUBSTRING(id,4)-2))
-> FROM housewares2;

e gy +
| id | LEFT(SUBSTRING(id,4),LENGTH(SUBSTRING(id,4)-2)) |
ey e ———————— +
| DIN4O672US | 40672 I
| KIT372UK | 372 I
| KIT17290P | 1729 I
| BED38SG | 38 I
| BTH485US | 485 I
| BTH415JP | 415 I
o o +

But that's more complex than necessary. The SUBSTRING() function takes an optional third argument specifying a
desired result length, and we know that the length of the middle part is equal to the length of the string minus five
(three for the characters at the beginning and two for the characters at the end). The following query demonstrates
how to get the numeric middle part by beginning with the ID, then stripping off the rightmost suffix:

mysql> SELECT id, SUBSTRING(id,4), SUBSTRING(id,4,LENGTH(id)-5)
-> FROM housewares?2;

e S Sy SR +
| id | SUBSTRING(id,4) | SUBSTRING(id,4,LENGTH(id)-5) |
o Sy O +
| DIN4O672US | 40672US | 40672 |
| KIT372UK | 372UK | 372 I
| KIT1729JP | 1729JP | 1729 I
| BED38SG | 38SG | 38 I
| BTH485US | 485US | 485 I
| BTH415JP | 415JP | 415 I
e S ey +

Unfortunately, although the final expression correctly extracts the numeric part from the 1Ds, the resulting values
are strings. Consequently, they sort lexically rather than numerically:

mysqgl> SELECT * FROM housewares2
-> ORDER BY SUBSTRING(id,4,LENGTH(id)-5);

| KIT17293P | microwave oven |

| KIT372UK | garbage disposal |

| BED38SG | bedside lamp |

| DIN4AO672US | dining table |

| BTH415JP | lTavatory |

I I I
+

BTH485US shower stall

How to deal with that? One way is to add zero, which tells MySQL to perform a string-to-number conversion that
results in a numeric sort of the serial number values:

mysql> SELECT * FROM housewares?2
-> ORDER BY SUBSTRING(id,4,LENGTH(id)-5)+0;

o Ny +
| id | description |
o — —— o +
BED38SG	bedside lamp
KIT372UK	garbage disposal
BTH415JP	lavatory
BTH485US	shower stall
KIT1729JP	microwave oven
DIN4AO672US	dining table
o Ry +

But in this particular case, a simpler solution is possible. It's not necessary to calculate the length of the numeric
part of the string, because the string-to-number conversion operation will strip off trailing non-numeric suffixes
and provide the values needed to sort on the variable-length serial number portion of the id values. That means the
third argument to SUBSTRING() actually isn't needed:

mysql> SELECT * FROM housewares?2
-> ORDER BY SUBSTRING(id,4)+0;

o Ny +
| id | description |
o o +
BED38SG	bedside lamp
KIT372UK	garbage disposal
BTH415JP	lavatory
BTH485US	shower stall
KIT1729JP	microwave oven
DIN4AO672US	dining table
o e +

In the preceding example, the ability to extract variable-length substrings was based on the different kinds of
characters in the middle of the ID values, compared to the characters on the ends (that is, digits versus non-digits).
In other cases, you may be able to use delimiter characters to pull apart column values. For the next examples,
assume a housewares3 table with id values that look like this:

mysqgl> SELECT * FROM housewares3;

N Ry +
| id | description |
o o +
| 13-478-92-2 | dining table |

873-48-649-63 garbage disposal

I I I
8-4-2-1	microwave oven
97-681-37-66	bedside lamp
27-48-534-2	shower stall
5764-56-89-72	lavatory

+

To extract segments from these values, use SUBSTRING_INDEX(str,c,n). It searches into a string str for the n-th
occurrence of a given character c and returns everything to the left of that character. For example, the following
call returns 13-478:

SUBSTRING_INDEX("13-478-92-2","-",2)

If n is negative, the search for c proceeds from the right and returns the rightmost string. This call returns 478-92-
2:

SUBSTRING_INDEX("13-478-92-2","-",-3)

By combining SUBSTRING_INDEX() calls with positive and negative indexes, it's possible to extract successive
pieces from each id value. One way is to extract the first n segments of the value, then pull off the rightmost one.
By varying n from 1 to 4, we get the successive segments from left to right:

SUBSTRING_INDEX(SUBSTRING_INDEX(id,"-",1),"-",-1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,"-",2),"-",-1)
SUBSTRING_ INDEX(SUBSTRING_INDEX(id,"-",3),"-",-1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,"-",4),"-",-1)

The first of those expressions can be optimized, because the inner SUBSTRING_INDEX() call returns a single-
segment string and is sufficient by itself to return the leftmost id segment:

SUBSTRING_INDEX(id, "-",1)

Another way to obtain substrings is to extract the rightmost n segments of the value, then pull off the first one.
Here we vary n from -4 to -1:

SUBSTRING_INDEX(SUBSTRING_INDEX(i

d,"-",-4),"-",1)
SUBSTRING__INDEX(SUBSTRING_INDEX(id

d

d

",-3),"-".1)
",-2),"-",1)
.-1),7-1)

SUBSTRING_ INDEX(SUBSTRING_INDEX(id, *
SUBSTRING_INDEX(SUBSTRING_INDEX(1d, "

Again, an optimization is possible. For the fourth expression, the inner SUBSTRING_INDEX() call is sufficient to
return the final substring:

SUBSTRING_INDEX(id,"-",-1)

These expressions can be difficult to read and understand, and you probably should try experimenting with a few
of them to see how they work. Here is an example that shows how to get the second and fourth segments from the

id values:

SELECT
id,

13-478-92-2
873-48-649-63
8-4-2-1
97-681-37-66
27-48-534-2
5764-56-89-72

o ————— — - —

SUBSTRING_INDEX(SUBSTRING_INDEX(id,"-",2),"-",-1) AS segment2,
SUBSTRING_INDEX(SUBSTRING_INDEX(id,"-",4),"-",-1) AS segment4
FROM housewares3;

Fom e +
segment2 | segment4d |
—————————— T
478 | 2 |
48 | 63 |
4 | 1 |
681 | 66 |
48 | 2 |
56 | 72 |
—————————— Fom e

To use the substrings for sorting, use the appropriate expressions in the ORDER BY clause. (Remember to force a
string-to-number conversion by adding zero if you want the sort to be numeric rather than lexical.) The following
two queries order the results based on the second id segment. The first sorts lexically, the second numerically:

mysql> SELECT *
-> ORDER BY

8-4-2-1
13-478-92-2
873-48-649-63
27-48-534-2
5764-56-89-72
97-681-37-66

mysqgl> SELECT *
-> ORDER BY

8-4-2-1
873-48-649-63
27-48-534-2
5764-56-89-72
13-478-92-2
97-681-37-66

F
S
+

o ———— — — - —

E
S

F ——— —— — o —

ROM housewares3
UBSTRING_INDEX(SUBSTRING_INDEX(id,"-",2),"-",-1)
__________________ +

description
__________________ +
microwave oven
dining table
garbage disposal
shower stall
lavatory
bedside lamp
__________________ +
ROM housewares3
UBSTRING_INDEX(SUBSTRING_INDEX(id,"-",2),"-",-1)+0;
__________________ +

description
__________________ +
microwave oven
garbage disposal
shower stall
lavatory

dining table
bedside lamp
__________________ +

The substring-extraction expressions here are messy, but at least the column values to which we're applying them
have a consistent number of segments. To sort values that have varying numbers of segments, the job can be more
difficult. The next section shows an example illustrating why that is.

6.15 Sorting Hostnames in Domain Order

6.15.1 Problem

You want to sort hostnames in domain order, with the rightmost parts of the names more significant than the

leftmost parts.

6.15.2 Solution

Break apart the names and sort the pieces from right to left.

6.15.3 Discussion

Hostnames are strings and therefore their natural sort order is lexical. However, it's often desirable to sort
hostnames in domain order, where the rightmost segments of the hostname values are more significant than the
leftmost segments. Suppose you have a table hostname that contains the following names:

mysqgl> SELECT name FROM hostname ORDER BY name;

| cvs.php.net |
| dbi.perl.org |
| Jakarta.apache.org |
| Tists.mysql.com |
| mysql.com |
| www_kitebird.com |

The preceding query demonstrates the natural lexical sort order of the name values. That differs from domain order,

as shown by the following table:

Lexical order

Domain order

cvs.php.net

www . kitebird.com

dbi.perl.org

mysqgl .com

Jakarta.apache.org

lists.mysql.com

lists.mysql.com

cvs.php.net

mysql .com

Jakarta.apache.org

www . kitebird.com

dbi.perl.org

Producing domain-ordered output is a substring-sorting problem, where it's necessary to extract each segment of
the names so they can be sorted in right-to-left fashion. There is also an additional complication if your values
contain different numbers of segments, as our example hostnames do. (Most of them have three segments, but

mysql .com has only two.)

To extract the pieces of the hostnames, begin by using SUBSTRING_INDEX() in a manner similar to that described
previously in Recipe 6.14. The hostname values have a maximum of three segments, from which the pieces can be
extracted left to right like this:

SUBSTRING_ INDEX(SUBSTRING_INDEX(name,".",-3),".",1)
SUBSTRING_ INDEX(SUBSTRING_INDEX(name,".",-2),".",1)
SUBSTRING_INDEX(name, ".",-1)

These expressions work properly as long as all the hostnames have three components. But if a name has fewer than
three, we don't get the correct result, as the following query demonstrates:

mysqgl> SELECT name,
-> SUBSTRING_INDEX(SUBSTRING_INDEX(name,".",-3),".",1) AS leftmost,
-> SUBSTRING_INDEX(SUBSTRING_INDEX(name,".",-2),".",1) AS middle,
-> SUBSTRING_INDEX(nhame,".",-1) AS rightmost
-> FROM hostname;

T o o —— o +
| name | leftmost | middle | rightmost |
Ty T — - T - +
cvs.php.net	cvs	php	net
dbi.perl.org	dbi	perl	org
Tists.mysqgl.com	lists	mysql	com
mysql.com	mysql	mysql	com
jJakarta.apache.org	jakarta	apache	org
www_kitebird.com	www	kitebird	com
o TR T ST +

Notice the output for the mysql .com row; it has mysgl for the value of the Ieftmost column, where it should have
an empty string. The segment-extraction expressions work by pulling off the rightmost n segments, then returning
the leftmost segment of the result. The source of the problem for mysql . com is that if there aren't n segments, the
expression simply returns the leftmost segment of however many there are. To fix this problem, prepend a
sufficient number of periods to the hostname values to guarantee that they have the requisite number of segments:

mysqgl> SELECT name,
-> SUBSTRING_INDEX(SUBSTRING_INDEX(CONCAT("..",name),".",-3),".",1)
-> AS leftmost,
-> SUBSTRING_INDEX(SUBSTRING_INDEX(CONCAT(".",name),".",-2),".",1)
-> AS middle,
-> SUBSTRING_INDEX(nhame,".",-1) AS rightmost
-> FROM hostname;

e Fom e o o +
| name | leftmost | middle | rightmost |
Ty T — - T - +
cvs.php.net	cvs	php	net
dbi.perl._org	dbi	perl	org
Tists.mysqgl.com	lists	mysqgl	com
mysql.com		mysqgl	com
jJakarta.apache.org	jakarta	apache	org
www_kitebird.com	www	kitebird	com
Ty o o —— o +

That's pretty ugly. But these expressions do serve to extract the substrings that are needed for sorting hostname
values correctly in right-to-left fashion:

mysqgl> SELECT name FROM hostname
-> ORDER BY
-> SUBSTRING_INDEX(name,".",-1),
-> SUBSTRING_INDEX(SUBSTRING_INDEX(CONCAT(".",name),".",-2),".",1),
-> SUBSTRING_INDEX(SUBSTRING_INDEX(CONCAT("..",name),".",-3),".",1);

| www_kitebird.com

| mysql.com

| Tists.mysql.com

| cvs.php.net

| jakarta.apache.org
| dbi.perl.org
e +

If you had hostnames with a maximum of four segments rather than three, you'd need to add to the ORDER BY clause
another SUBSTRING_INDEX() expression that prepends three dots to the hostname values.

6.16 Sorting Dotted-Quad IP Values in Numeric Order
6.16.1 Problem

You want to sort strings that represent IP numbers in numeric order.

6.16.2 Solution

Break apart the strings and sort the pieces numerically. Or just use INET_ATON().

6.16.3 Discussion

If a table contains IP numbers represented as strings in dotted-quad notation (for example, 111.122.133.144),
they'll sort lexically rather than numerically. To produce a numeric ordering instead, you can sort them as four-part
values with each part sorted numerically. To accomplish this, use a technique similar to that for sorting hostnames,
but with the following differences:

« Dotted quads always have four segments, so there's no need to prepend dots to the value before extracting
substrings.

o Dotted quads sort left to right, so the order in which substrings are used in the ORDER BY clause is opposite
to that used for hostname sorting.

e The segments of dotted-quad values are numbers, so add zero to each substring to tell MySQL to using a
numeric sort rather than a lexical one.

Suppose you have a hostip table with a string-valued ip column containing IP numbers:

mysqgl> SELECT ip FROM hostip ORDER BY ip;

| 127.0.0.1 I
| 192.168.0.10 I
| 192.168.0.2 I
| 192.168.1.10 I
| 192.168.1.2 I
| 21.0.0.1 I
| 255.255.255.255 |

The preceding query produces output sorted in lexical order. To sort the ip values numerically, you can extract
each segment and add zero to convert it to a number using an ORDER BY clause like this:

mysql> SELECT ip FROM hostip
-> ORDER BY
-> SUBSTRING_INDEX(ip,"-",1)+0,
—-> SUBSTRING_INDEX(SUBSTRING_INDEX(ip,".",-3),".",1)+0,
—-> SUBSTRING_INDEX(SUBSTRING_INDEX(ip,".",-2),".",1)+0,
-> SUBSTRING_INDEX(ip,"-",-1)+0;

| ip I

| 21.0.0.1 I
| 127.0.0.1 I
| 192.168.0.2 I
| 192.168.0.10 I
| 192.168.1.2 I
| 192.168.1.10 I
| 255.255.255.255 |

A simpler solution is possible if you have MySQL 3.23.15 or higher. Then you can sort the IP values using the
INET_ATON() function, which converts a network address directly to its underlying numeric form:

mysqgl> SELECT ip FROM hostip ORDER BY INET_ATON(ip);

I ip I

| |
| 127.0.0.1 I
| 192.168.0.2 I
| 192.168.0.10 I
| 192.168.1.2 I
| 192.168.1.10 I
| 255.255.255.255 |

If you're tempted to sort by simply adding zero to the ip value and using ORDER BY on the result, consider the
values that kind of string-to-number conversion actually will produce:

mysqgl> SELECT ip, ip+0 FROM hostip;
o o —_— +

| ip | ip+0 |
Fmm Fmm e ——— +
| 127.0.0.1 I 127 |
192.168.0.2	192.168
192.168.0.10	192.168
192.168.1.2	192.168
192.168.1.10	192.168
255.255.255.255	255.255
21.0.0.1 I 21	
T Fom e ——_—— +

The conversion retains only as much of each value as can be interpreted as a valid number. The remainder would
be unavailable for sorting purposes, each though it's necessary to produce a correct ordering.

6.17 Floating Specific Values to the Head or Tail of the Sort
Order

6.17.1 Problem
You want a column to sort the way it normally does, except for a few values that you want at a specific spot.
6.17.2 Solution

Add another sort column to the ORDER BY clause that places those few values where you want them. The remaining
sort columns will have their usual effect for the other values.

6.17.3 Discussion

If you want to sort a result set normally except that you want particular values first, create an additional sort
column that is O for those values and 1 for everything else. We used this technique earlier to float NULL values to
the high end of the sort order (see Recipe 6.6), but it works for other types of information as well. Suppose you
want to sort mai I table messages in sender/recipient order, with the exception that you want to put messages for
phil first. You can do that like this:

mysql> SELECT t, srcuser, dstuser, size

-> FROM mail

-> ORDER BY IF(srcuser="phil",0,1), srcuser, dstuser;
vy R Fommmmem R +
| t srcuser | dstuser | size |
Ry Fom e Fom e T +
2001-05-16 23:04:19	phil	barb	10294
2001-05-12 15:02:49	phil	phil	1048
2001-05-15 08:50:57	phil	phil	978
2001-05-14 11:52:17	phil	tricia	5781
2001-05-17 12:49:23	phil	tricia	873
2001-05-14 14:42:21	barb	barb	98151
2001-05-11 10:15:08	barb	tricia	58274
2001-05-13 13:59:18	barb	tricia	271
2001-05-14 09:31:37	gene	barb	2291
2001-05-16 09:00:28	gene	barb	613
2001-05-15 07:17:48	gene	gene	3824

2001-05-15 17:35:31 | gene | gene 3856
2001-05-19 22:21:51 | gene | gene 23992

I | |
I | |
2001-05-15 10:25:52	gene	tricia	998532
2001-05-12 12:48:13	tricia	gene	194925
2001-05-14 17:03:01	tricia	phil	2394482
o R Fommmmmm +

The value of the extra sort column is 0 for rows where the srcuser value is phil, and 1 for all other rows. By
making that the most significant sort column, records for messages sent by phi I float to the top of the output. (To
sink them to the bottom instead, either sort the column in reverse order using DESC, or reverse the order of the
second and third arguments of the 1F() function.)

You can also use this technique for particular conditions, not just specific values. To put first those records where
people sent messages to themselves, do this:

mysql> SELECT t, srcuser, dstuser, size

-> FROM mail
-> ORDER BY IF(srcuser=dstuser,0,1), srcuser, dstuser;
vy R T R +
| t | srcuser | dstuser | size |
Ry Fom e Fom e T +
2001-05-14 14:42:21	barb	barb	98151
2001-05-15 07:17:48	gene	gene	3824
2001-05-15 17:35:31	gene	gene	3856
2001-05-19 22:21:51	gene	gene	23992
2001-05-12 15:02:49	phil	phil	1048
2001-05-15 08:50:57	phil	phil	978
2001-05-11 10:15:08	barb	tricia	58274
2001-05-13 13:59:18	barb	tricia	271
2001-05-14 09:31:37	gene	barb	2291
2001-05-16 09:00:28	gene	barb	613
2001-05-15 10:25:52	gene	tricia	998532
2001-05-16 23:04:19	phil	barb	10294
2001-05-14 11:52:17	phil	tricia	5781
2001-05-17 12:49:23	phil	tricia	873
2001-05-12 12:48:13	tricia	gene	194925
2001-05-14 17:03:01	tricia	phil	2394482
e Fmm e —— Fom e Fem e +

If you have a pretty good idea about the contents of your table, you can sometimes eliminate the extra sort column.
For example, srcuser is never NULL in the mai I table, so the previous query can be rewritten as follows to use one
less column in the ORDER BY clause (assuming that NULL values sort ahead of all non-NULL values):

mysqgl> SELECT t, srcuser, dstuser, size

-> FROM mail
-> ORDER BY IF(srcuser=dstuser,NULL,srcuser), dstuser;
S Fomm TR Fomm - +
| t | srcuser | dstuser | size |
Sy Fommmmmmem Fommmmem R +
2001-05-14 14:42:21	barb	barb	98151
2001-05-15 07:17:48	gene	gene	3824
2001-05-15 17:35:31	gene	gene	3856
2001-05-19 22:21:51	gene	gene	23992

2001-05-12 15:02:49	phil	phil	1048
2001-05-15 08:50:57	phil	phil	978
2001-05-11 10:15:08	barb	tricia	58274
2001-05-13 13:59:18	barb	tricia	271
2001-05-14 09:31:37	gene	barb	2291
2001-05-16 09:00:28	gene	barb	613
2001-05-15 10:25:52	gene	tricia	998532
2001-05-16 23:04:19	phil	barb	10294
2001-05-14 11:52:17	phil	tricia	5781
2001-05-17 12:49:23	phil	tricia	873
2001-05-12 12:48:13	tricia	gene	194925
2001-05-14 17:03:01	tricia	phil	2394482
Ry Fom e Fom T +

6.18 Sorting in User-Defined Orders

6.18.1 Problem

You want to define the sort order for all values in a column.

6.18.2 Solution

Use FIELD() to map column values onto a sequence that places the values in the desired order.
6.18.3 Discussion

The previous section showed how to make a specific group of rows go to the head of the sort order. If you want to
impose a specific order on all values in a column, use the FIELD() function to map them to a list of numeric
values and use the numbers for sorting. FIELD() compares its first argument to the following arguments and
returns a number indicating which one of them it matches. The following FIELD() call compares value to stri,
str2, str3, and str4, and returns 1, 2, 3, or 4, depending on which one of them value is equal to:

FIELD(value,strl,str2,str3,str4)

The number of comparison values need not be four; FIELD() takes a variable-length argument list. If value is
NULL or none of the values match, FIELD() returns O.

FIELD() can be used to sort an arbitrary set of values into any order you please. For example, to display
driver_log records for Henry, Suzi, and Ben, in that order, do this:

mysqgl> SELECT * FROM driver_log
-> ORDER BY FIELD(name, "Henry®,"Suzi®,"Ben");

| rec_id name | trav_date | miles |
Fomm - S S S +
3	Henry	2001-11-29	300
4	Henry	2001-11-27	96
6	Henry	2001-11-26	115
8	Henry	2001-12-01	197
10	Henry	2001-11-30	203
2	Suzi	2001-11-29	391

I 7 | Suzi | 2001-12-02 | 502 |
I 1] Ben | 2001-11-30 | 152 |
I 5] Ben | 2001-11-29 | 131 |
I 9 | Ben | 2001-12-02 | 79 |
o Fo——_— S o +

You can use FIELD() with column substrings, too. To sort items from the housewares table by country of
manufacture using the order Us, UK, JP, SG, do this:

mysql> SELECT id, description FROM housewares
-> ORDER BY FIELD(RIGHT(id,2),"US", "UK","JP","SG");

o Ny +
| id | description |
o — —— o +
DIN4AO672US	dining table
BTHO0485US	shower stall
KITOO372UK	garbage disposal
KITO1729JP	microwave oven
BTHOO415JP	lavatory
BEDOOO38SG	bedside lamp
o e +

More generally, FIELD() can be used to sort any kind of category-based values into specific orders when the
categories don't sort naturally into any useful sequence.

6.19 Sorting ENUM Values
6.19.1 Problem
ENUM values don't sort like other string columns.

6.19.2 Solution

Learn how they work, and exploit those properties to your own advantage.

6.19.3 Discussion

ENUM is considered a string column type, but ENUM values have the special property that they are stored numerically
with values ordered the same way they are listed in the table definition. These numeric values affect how
enumerations are sorted, which can be very useful. Suppose you have a table named weekday containing an
enumeration column day that has weekday names as its members:

CREATE TABLE weekday

day ENUM(*Sunday"®, "Monday~, "Tuesday”, "Wednesday",
"Thursday”, "Friday", "Saturday®)
):

Internally, MySQL defines the enumeration values Sunday through Saturday to have numeric values from 1 to 7.
To see this for yourself, create the table using the definition just shown, then insert into it a record for each day of
the week. However, to make the insertion order differ from sorted order (so you can see the effect of sorting), add
the days in random order:

mysql> INSERT INTO weekday (day) VALUES("Monday®),("Friday"),
-> ("Tuesday®), ("Sunday®), ("Thursday®), ("Saturday®), ("Wednesday®);

Then select the values, both as strings and as the internal numeric value (the latter are obtained by using +0 to
effect a string-to-number conversion):

mysqgl> SELECT day, day+0 FROM weekday;

+

I

+

I
Friday |
Tuesday |
I

Thursday |
I

I

+

Saturday

|
|
|
| Sunday
|
|
| Wednesday

Notice that because the query includes no ORDER BY clause, the records are returned in unsorted order. If you add
an ORDER BY day clause, it becomes apparent that MySQL uses the internal numeric values for sorting:

mysqgl> SELECT day, day+0 FROM weekday ORDER BY day;

+

I

+

I
Monday |
Tuesday |
I

Thursday |
I

I

+

Friday

|
|
|
| Wednesday
|
|
| Saturday

What about occasions when you do want to sort ENUM values in lexical order? Force them to be treated as strings
for sorting using the CONCAT() function. CONCAT() normally takes multiple arguments and concatenates them
into a single string. But it can be used with just a single argument, which is useful when all you want is its behavior
of producing a string result:

mysql> SELECT day, day+0 FROM weekday ORDER BY CONCAT(day);

o o —_—— +
| day | day+0 |
o Fomm +
| Friday | 6 |
| Monday | 2]

| Saturday | 7 |
| Sunday | 1]
| Thursday | 5]
| Tuesday | 31
| Wednesday | 4 |

+

If you always (or nearly always) sort a non-enumeration column in a specific non-lexical order, consider changing
the column type to ENUM, with its values listed in the desired sort order. To see how this works, create a color table
containing a string column and populate it with some sample rows:

mysql> CREATE TABLE color (nhame CHAR(10));
mysqgl> INSERT INTO color (name) VALUES ("blue®),("green®),
-> ("indigo"),("orange”),("red"),("violet®),("yellow");

Sorting by the name column at this point produces lexical order because the column contains CHAR values:

mysql> SELECT name FROM color ORDER BY name;

red
violet
yellow

| |
| |
| |
| orange |
| |
| |
| |

Now suppose you want to sort the column by the order in which colors occur in the rainbow. (This order is given
by the name "Roy G. Biv," where successive letters of that name indicate the first letter of the corresponding color
name.) One way to produce a rainbow sort is to use FIELD():

mysqgl> SELECT name FROM color
-> ORDER BY
-> FIELD(name, "red®, "orange”, "yellow", "green”, "blue”, "indigo”, "violet");

| red |
| orange |
| yellow |
| green |
| blue |
| indigo |
| violet |

To accomplish the same end without FIELD(), use ALTER TABLE to convert the name column to an ENUM that lists
the colors in the desired sort order:

mysql> ALTER TABLE color
-> MODIFY name
-> ENUM("red®, "orange®, "yellow", "green®, "blue”,"indigo”, "violet");

After converting the table, sorting on the name column produces rainbow sorting naturally with no special
treatment:

mysql> SELECT name FROM color ORDER BY name;

| red |
| orange |
| yellow |
| green |
| blue |
| indigo |
| violet |

Chapter 7. Generating Summaries

Section 7.1. Introduction

Section 7.2. Summarizing with COUNT()

Section 7.3. Summarizing with MIN() and MAX()

Section 7.4. Summarizing with SUM() and AVG()

Section 7.5. Using DISTINCT to Eliminate Duplicates

Section 7.6. Finding Values Associated with Minimum and Maximum Values

Section 7.7. Controlling String Case Sensitivity for MIN() and MAX()

Section 7.8. Dividing a Summary into Subgroups

Section 7.9. Summaries and NULL Values

Section 7.10. Selecting Only Groups with Certain Characteristics

Section 7.11. Determining Whether VValues are Unigue

Section 7.12. Grouping by Expression Results

Section 7.13. Categorizing Non-Categorical Data

Section 7.14. Controlling Summary Display Order

Section 7.15. Finding Smallest or Largest Summary Values

Section 7.16. Date-Based Summaries

Section 7.17. Working with Per-Group and Overall Summary Values Simultaneously

Section 7.18. Generating a Report That Includes a Summary and a List

7.1 Introduction

Database systems are useful for storing and retrieving records, but they also can boil down information to
summarize your data in more concise form. Summaries are useful when you want the overall picture rather than
the details. They're also typically more readily understood than a long list of records. Summary techniques allow
you to answer questions such as "How many?" or "What is the total?" or "What is the range of values?" If you're
running a business, you may want to know how many customers you have in each state, or how much sales volume
you're generating each month. You could determine the per-state count by producing a list of customer records and
counting them yourself, but that makes no sense when MySQL can count them for you. Similarly, to determine
sales volume by month, a list of raw order information records is not especially useful if you have to add up the
order amounts yourself. Let MySQL do it.

The examples just mentioned illustrate two common summary types. The first (the number of customer records per
state) is a counting summary. The content of each record is important only for purposes of placing it into the
proper group or category for counting. Such summaries are essentially histograms, where you sort items into a set
of bins and count the number of items in each bin. The second example (sales volume per month) is an instance of
a summary that's based on the contents of records—sales totals are computed from sales values in individual order
records.

Yet another kind of summary produces neither counts nor sums, but simply a list of unique values. This is useful if
you don't care how many instances of each value are present, but only which values are present. If you want to
know the states in which you have customers, you want a list of the distinct state names contained in the records,
not a list consisting of the state value from every record. Sometimes it's even useful to apply one summary
technique to the result of another summary. For example, to determine how many states your customers live in,
generate a list of unique customer states, then count them.

The type of summaries you can perform may depend on the kind of data you're working with. A counting summary
can be generated from any kind of values, whether they be numbers, strings, or dates. For summaries that involve
sums or averages, only numeric values can be used. You can count instances of customer state names to produce a
demographic analysis of your customer base, but you cannot add or average state names—that doesn't make sense.

Summary operations in MySQL involve the following SQL constructs:

e To compute a summary value from a set of individual values, use one of the functions known as aggregate
functions. These are so called because they operate on aggregates (groups) of values. Aggregate functions
include COUNT(), which counts records or values in a query result; MIN() and MAX(), which find
smallest and largest values; and suM() and AVG(), which produce sums and means of values. These
functions can be used to compute a value for the entire result set, or with a GROUP BY clause to group the
rows into subsets and obtain an aggregate value for each one.

e To obtain a list of unique values, use SELECT DISTINCT rather than SELECT.

e To count how may distinct values there are, use COUNT(DISTINCT) rather than COUNT().

The recipes in this chapter first illustrate basic summary techniques, then show how to perform more complex
summary operations. You'll find additional examples of summary methods in later chapters, particularly those that
cover joins and statistical operations. (See Chapter 12 and Chapter 13.)

The primary tables used for examples here are the driver_log and mai I tables. These were also used heavily in
Chapter 6, so they should look familiar. A third table used recurrently throughout the chapter is states, which has
rows containing a few pieces of information for each of the United States:

mysqgl> SELECT * FROM states ORDER BY name;

PRy Fom o o +
| name | abbrev | statehood | pop |
e L T — T S T —— +
Alabama	AL	1819-12-14	4040587
Alaska	AK	1959-01-03	550043
Arizona	AZ	1912-02-14	3665228
Arkansas	AR	1836-06-15	2350725
California	CA	1850-09-09	29760021
Colorado	CO	1876-08-01	3294394
Connecticut	CT	1788-01-09	3287116

The name and abbrev columns list the full state name and the corresponding abbreviation. The statehood column
indicates the day on which the state entered the Union. pop is the state population as of April, 1990, as reported by
the U.S. Census Bureau.

Other tables are used occasionally as well. You can create most of them with the scripts found in the tables

directory of the recipes distribution. The tables containing data from the baseball1l.com baseball database can be
created using the instructions in the baseballl directory, and the kjv table is described in Recipe 4.12.

7.2 Summarizing with COUNT()
7.2.1 Problem

You want to count the number of rows in a table, the number of rows that match certain conditions, or the number
of times that particular values occur.

7.2.2 Solution

Use the COUNT() function.

7.2.3 Discussion

To count the number of rows in an entire table or that match particular conditions, use the COUNT() function. For
example, to display the contents of the records in a table, you could use a SELECT * query, but to count them

instead, use SELECT COUNT (*). Without a WHERE clause, the query counts all the records in the table, such as in the
following query, which shows how many rows the driver_log table contains:

mysqgl> SELECT COUNT(*) FROM driver_log;

If you don't know how many U.S. states there are, this query tells you:

mysqgl> SELECT COUNT(*) FROM states;

o +
| COUNT(®) |
Fom e +
| 50 |
o +

COUNT(*) with no WHERE clause is very quick for ISAM or MylISAM tables. For BDB or InnoDB tables, you may
want to avoid it; the query requires a full table scan for those table types, which can be slow for large tables. If an
approximate row count is all you require and you have MySQL 3.23 or later, a workaround that avoids a full scan
is to use SHOW TABLE STATUS and examine the Rows value in the output. Were states an InnoDB table, the query
output might look like this:

mysqgl> SHOW TABLE STATUS FROM cookbook LIKE "states®\G

Name: states
Type: InnoDB
Row_format: Dynamic
Rows: 50
Avg_row_length: 327
Data_length: 16384
Max_data_length: NULL
Index_length: O
Data free: 0O
Auto_increment: NULL
Create_time: NULL
Update time: NULL
Check_time: NULL
Create_options:
Comment: InnoDB free: 479232 kB

To count only the number of rows that match certain conditions, add an appropriate WHERE clause to the query. The
conditions can be arbitrary, making COUNT() useful for answering many kinds of questions:

How many times did drivers travel more than 200 miles in a day?
mysql> SELECT COUNT(*) FROM driver_log WHERE miles > 200;

° - +
. | COUNT(®) |
° F——_——————— +
. | 4
- +

How many days did Suzi drive?
mysqgl> SELECT COUNT(*) FROM driver_log WHERE name = "Suzi~;

[]
(@]
o
Cc
=
—
~
*
o/

How many states did the United States consist of at the beginning of the 20th century?
mysql> SELECT COUNT(*) FROM states WHERE statehood < "1900-01-01°%;

° F——_——————— +
° | COUNT(*) |
° F—_———————— +
° | 45 |
Fe———————— +

How many of those states joined the Union in the 19th century?
mysql> SELECT COUNT(*) FROM states

° -> WHERE statehood BETWEEN "1800-01-01° AND "1899-12-31°7;
° - +
° | COUNT(™) |
° F——_——————— +
° | 29 |
Fem——————— +

The CoOUNT() function actually has two forms. The form we've been using, COUNT (*), counts rows. The other
form, COUNT (expr), takes a column name or expression argument and counts the number of non-NULL values. The
following query shows how to produce both a row count for a table and a count of the number of non-NULL values
in one of its columns:

SELECT COUNT(*), COUNT(mycol) FROM mytbl;

The fact that COUNT (expr) doesn't count NULL values is useful when producing multiple counts from the same set
of values. To count the number of Saturday and Sunday trips in the driver_log table with a single query, do this:

mysql> SELECT
-> COUNT(IF(DAYOFWEEK(trav_date)=7,1,NULL)) AS "Saturday trips-,
-> COUNT(IF(DAYOFWEEK(trav_date)=1,1,NULL)) AS "Sunday trips”
-> FROM driver_log;

Ty o +
| Saturday trips | Sunday trips |
o o +
I 1] 2 |
Ty o +

Or to count weekend versus weekday trips, do this:

mysql> SELECT
-> COUNT(IF(DAYOFWEEK(trav_date) IN (1,7),1,NULL)) AS “weekend trips”,

-> COUNT(IF(DAYOFWEEK(trav_date) IN (1,7),NULL,1)) AS "weekday trips"
-> FROM driver_log;

o o +
| weekend trips | weekday trips |
T S +
I 3 | 7
o o +

The 1F() expressions determine, for each column value, whether or not it should be counted. If so, the expression
evaluates to 1 and COUNT() counts it. If not, the expression evaluates to NULL and COUNT() ignores it. The effect
is to count the number of values that satisfy the condition given as the first argument to IF().

7.2.4 See Also

The difference between COUNT(*) and COUNT (expr) is discussed further in "Summaries and NULL Values."

7.3 Summarizing with MIN() and MAX()

7.3.1 Problem

You need to determine the smallest or largest of a set of values.

7.3.2 Solution

Use MIN() to find the smallest value, MAX() to find the largest.

7.3.3 Discussion

Finding smallest or largest values is somewhat akin to sorting, except that instead of producing an entire set of
sorted values, you select only a single value at one end or the other of the sorted range. This kind of operation
applies to questions about smallest, largest, oldest, newest, most expensive, least expensive, and so forth. One way

to find such values is to use the MIN(C) and MAX() functions. (Another way to address these questions is to use
LIMIT; see the discussions in Recipe 3.17 and Recipe 3.19.)

Because MIN() and MAX() determine the extreme values in a set, they're useful for characterizing ranges:

e What date range is represented by the rows in the mai I table? What are the smallest and largest messages
sent?

° mysqgl> SELECT

. -> MIN(t) AS earliest, MAX(t) AS latest,

° -> MIN(size) AS smallest, MAX(size) AS largest

° -> FROM mail;

° gy Ny gy o T +
° | earliest | latest | smallest | largest |
° gy Ny gy o T +
o | 2001-05-11 10:15:08 | 2001-05-19 22:21:51 | 271 | 2394482 |

o gy o o +

e What are the shortest and longest trips in the driver_log table?
° mysqgl> SELECT MIN(miles) AS shortest, MAX(miles) AS longest

° -> FROM driver_log;
o R Fmm e +
° | shortest | longest |
o R Fmm e +
o | 79 | 502 |
Fom e Fom e +

e What are the lowest and highest U.S. state populations?
° mysql> SELECT MIN(pop) AS "fewest people®, MAX(pop) AS "most people-

° -> FROM states;

° o o +

° | fewest people | most people |

° o o +

o | 453588 29760021 |
o R +

e What are the first and last state names, lexically speaking?
mysqgl> SELECT MIN(nhame), MAX(name) FROM states;
° o —— o —— +

| MINChame) | MAX(nhame) |

° o o +

| Alabama | Wyoming |
Fom o +

MINC) and MAX() need not be applied directly to column values. They also work with expressions or values that
are derived from column values. For example, to find the lengths of the shortest and longest state names, do this:

mysqgl> SELECT MIN(LENGTH(name)) AS shortest, MAX(LENGTH(name)) AS longest
-> FROM states;
o o +

| shortest | longest |

7.4 Summarizing with SUM() and AVG()
7.4.1 Problem

You need to add up a set of numbers or find their average.

7.4.2 Solution

Use the suMm() or AVG() functions.

7.4.3 Discussion

SuM() and AVG() produce the total and average (mean) of a set of values:

What is the total amount of mail traffic and the average size of each message?
mysqgl> SELECT SUM(size) AS "total traffic”,

° -> AVG(size) AS "average message size”

° -> FROM mail;

o Fo o o +

° | total traffic | average message size |

o T S +

o | 3798185 | 237386 .5625 |
o Ry +

e How many miles did the drivers in the driver_log table travel? What was the average miles traveled per

day?

° mysqgl> SELECT SUM(miles) AS "total miles”,

o -> AVG(miles) AS "average miles/day*

. -> FROM driver_log;

o Fo o o +

° | total miles | average miles/day |

o T T +

o | 2166 | 216.6000 |
o e +

e What is the total population of the United States?
° mysqgl> SELECT SUM(pop) FROM states;

° F—_————————— +
. | SuM(pop) |
[} - +
. | 248102973 |
- +

(The value represents the population reported for April, 1990. The figure shown here differs from the U.S.
population reported by the U.S. Census Bureau, because the states table doesn't contain a count for
Washington, D.C.)

SUM() and AVG() are strictly numeric functions, so they can't be used with strings or temporal values. On the
other hand, sometimes you can convert non-numeric values to useful numeric forms. Suppose a table stores TIME
values that represent elapsed time:

mysqgl> SELECT t1 FROM time_val;

| 15:00:00 |
| 05:01:30 |
| 12:30:20 |

To compute the total elapsed time, use TIME_TO_SEC() to convert the values to seconds before summing them.
The result also will be in seconds; pass it to SEC_TO_TIME() should you wish the sum to be in TIME format:

mysqgl> SELECT SUM(TIME_TO_SEC(tl)) AS "“total seconds-,
-> SEC_TO_TIME(SUM(TIME_TO_SEC(tl1l))) AS "total time-"
-> FROM time_val;

o o +
| total seconds | total time |
o Fmm +
| 117110 | 32:31:50 |
o Fom +
7.4.4 See Also

The sum() and AVG() functions are especially useful in applications that compute statistics. They're explored
further in Chapter 13, along with STD(), a related function that calculates standard deviations.

7.5 Using DISTINCT to Eliminate Duplicates
7.5.1 Problem

You want to know which values are present in a set of values, without listing duplicate values a bunch of times. Or
you want to know how many distinct values there are.

7.5.2 Solution
Use DISTINCT to select unique values, or COUNT(DISTINCT) to count them.
7.5.3 Discussion

A summary operation that doesn't use aggregate functions is to determine which values or rows are contained in a
dataset by eliminating duplicates. Do this with DISTINCT (or DISTINCTROW, which is synonymous). DISTINCT is
useful for boiling down a query result, and often is combined with ORDER BY to place the values in more
meaningful order. For example, if you want to know the names of the drivers listed in the driver_1log table, use
the following query:

mysqgl> SELECT DISTINCT name FROM driver_log ORDER BY name;

| Ben |
| Henry |
| Suzi |

A query without DISTINCT produces the same names, but is not nearly as easy to understand:

mysqgl> SELECT name FROM driver_log;

If you want to know how many different drivers there are, use COUNT(DISTINCT):

mysql> SELECT COUNT(DISTINCT name) FROM driver_log;

R +
| COUNT(DISTINCT name) |
S +
I 3 |
e +

COUNT(DISTINCT) ignores NULL values. If you also want to count NULL as one of the values in the set if it's present,
do this:

COUNT(DISTINCT val) + IF(COUNT(IF(val IS NULL,1,NULL))=0,0,1)

The same effect can be achieved using either of the following expressions:

COUNT(DISTINCT val) + IF(SUM(ISNULL(val))=0,0,1)
COUNT(DISTINCT val) + (SUM(ISNULL(val))1=0)

COUNT(DISTINCT) is available as of MySQL 3.23.2. Prior to that, you have to use some kind of workaround based
on counting the number of rows in a SELECT DISTINCT query. One way to do this is to select the distinct values
into another table, then use COUNT(*) to count the number of rows in that table.

DISTINCT queries often are useful in conjunction with aggregate functions to obtain a more complete
characterization of your data. For example, applying COUNT(*) to a customer table indicates how many customers

you have, using DISTINCT on the state values in the table tells you which states you have customers in, and
COUNT(DISTINCT) on the state values tells you how many states your customer base represents.

When used with multiple columns, DISTINCT shows the different combinations of values in the columns and
COUNT(DISTINCT) counts the number of combinations. The following queries show the different sender/recipient
pairs in the mai 1 table, and how many such pairs there are:

mysql> SELECT DISTINCT srcuser, dstuser FROM mail
-> ORDER BY srcuser, dstuser;

Fommmemmem TR +
| srcuser | dstuser |

Fom e —_——_—— Fom e ——_—— +

| barb | barb |

| barb | tricia |

| gene | barb |

| gene | gene |

| gene | tricia |

| phil | barb |

| phil | phil |

| phil | tricia |

| tricia | gene |

| tricia | phil |

TR TR +

mysql> SELECT COUNT(DISTINCT srcuser, dstuser) FROM mail;
e +

| COUNT(DISTINCT srcuser, dstuser) |
e +

I 10 |
gy +

DISTINCT works with expressions, too, not just column values. To determine the number of hours of the day
during which messages in the mai I were sent, count the distinct HOUR() values:

mysql> SELECT COUNT(DISTINCT HOUR(t)) FROM mail;

S +
| COUNT(DISTINCT HOUR(L)) |
g +
I 12 |
e +

To find out which hours those were, list them:

mysqgl> SELECT DISTINCT HOUR(t) FROM mail ORDER BY 1;

+
I
I
I
I
I
I
I

=
\,

Note that this query doesn't tell you how many messages were sent each hour. That's covered in Recipe 7.16.

7.6 Finding Values Associated with Minimum and Maximum
Values

7.6.1 Problem

You want to know the values for other columns in the row containing the minimum or maximum value.

7.6.2 Solution

Use two queries and a SQL variable. Or use the "MAX-CONCAT trick." Or use a join.

7.6.3 Discussion

MINC) and MAX() find the endpoints of a range of values, but sometimes when finding a minimum or maximum
value, you're also interested in other values from the row in which the value occurs. For example, you can find the
largest state population like this:

mysql> SELECT MAX(pop) FROM states;

But that doesn't show you which state has this population. The obvious way to try to get that information is like
this:

mysqgl> SELECT name, MAX(pop) FROM states WHERE pop = MAX(pop);
ERROR 1111 at line 1: Invalid use of group function

Probably everyone attempts something like that sooner or later, but it doesn't work, because aggregate functions
like MINC) and MAX() cannot be used in WHERE clauses. The intent of the statement is to determine which record
has the maximum population value, then display the associated state name. The problem is that while you and |
know perfectly well what we'd mean by writing such a thing, it makes no sense at all to MySQL. The query fails
because MySQL uses the WHERE clause to determine which records to select, but it knows the value of an aggregate
function only after selecting the records from which the function's value is determined! So, in a sense, the
statement is self-contradictory. You could solve this problem using a subselect, except that MySQL won't have

those until Version 4.1. Meanwhile, you can use a two-stage approach involving one query that selects the
maximum size into a SQL variable, and another that refers to the variable in its WHERE clause:

mysql> SELECT @max := MAX(pop) FROM states;

mysqgl> SELECT @max AS "highest population®, name FROM states WHERE pop = @max;
e Fom e — +

| highest population | name |

Ry - +

| 29760021 | California |
e o +

This technique also works even if the minimum or maximum value itself isn't actually contained in the row, but is
only derived from it. If you want to know the length of the shortest verse in the King James Version, that's easy to
find:

mysql> SELECT MIN(LENGTH(vtext)) FROM Kjv;

S +
| MIN(LENGTH(vtext)) |
i +
| 11 |
e +

If you want to ask "What verse is that?," do this instead:

mysqgl> SELECT @min := MIN(LENGTH(vtext)) FROM kjv;
mysqgl> SELECT bname, cnum, vnum, vtext FROM kjv WHERE LENGTH(vtext) = @min;
Foe—— o R o —— +

| bname | cnum | vnum | vtext |

Another technique you can use for finding values associated with minima or maxima is found in the MySQL
Reference Manual, where it's called the "MAX-CONCAT trick." It's pretty gruesome, but can be useful if your
version of MySQL precedes the introduction of SQL variables. The technique involves appending a column to the
summary column using CONCAT(), finding the maximum of the resulting values using MAX(), and extracting the
non-summarized part of the value from the result. For example, to find the name of the state with the largest
population, you can select the maximum combined value of the pop and name columns, then extract the name part
from it. It's easiest to see how this works by proceeding in stages. First, determine the maximum population value
to find out how wide it is:

mysql> SELECT MAX(pop) FROM states;

That's eight characters. It's important to know this, because each column within the combined population-plus-
name values should occur at a fixed position so that the state name can be extracted reliably later. (By padding the
pop column to a length of eight, the name values will all begin at the ninth character.)

However, we must be careful how we pad the populations. The values produced by CONCAT() are strings, so the
population-plus-name values will be treated as such by MAX() for sorting purposes. If we left justify the pop
values by padding them on the right with RPAD(), we'll get combined values like the following:

mysql> SELECT CONCAT(RPAD(pop,8," "),name) FROM states;

| 4040587 Alabama
| 550043 Alaska

| 3665228 Arizona
| 2350725 Arkansas

Those values will sort lexically. That's okay for finding the largest of a set of string values with MAX(). But pop
values are numbers, so we want the values in numeric order. To make the lexical ordering correspond to the
numeric ordering, we must right justify the population values by padding on the left with LPAD():

mysqgl> SELECT CONCAT(LPAD(pop,8," ®),name) FROM states;

Ty +
| CONCAT(LPAD(pop,8," "),name) |
L +
| 4040587Alabama |
| 550043Alaska |
| 3665228Arizona |
| 2350725Arkansas |

Next, use the CONCAT() expression with MAX() to find the value with the largest population part:

mysql> SELECT MAX(CONCAT(LPAD(pop,8," "),name)) FROM states;

e +
| MAX(CONCAT(LPAD(pop,8," "),name)) |
Ty Ry My Sy +
| 29760021California |
e +

To obtain the final result (the state name associated with the maximum population), extract from the maximum
combined value the substring that begins with the ninth character:

mysql> SELECT SUBSTRING(MAX(CONCAT(LPAD(pop,8," "),name)),9) FROM states;

Clearly, using a SQL variable to hold an intermediate result is much easier. In this case, it's also more efficient
because it avoids the overhead for concatenating column values for sorting and decomposing the result for display.

Yet another way to select other columns from rows containing a minimum or maximum value is to use a join.
Select the value into another table, then join it to the original table to select the row that matches the value. To find
the record for the state with the highest population, use a join like this:

mysqgl> CREATE TEMPORARY TABLE t
-> SELECT MAX(pop) as maxpop FROM states;
mysql> SELECT states.* FROM states, t WHERE states.pop = t.maxpop;

o o —_—— o T +
| name | abbrev | statehood | pop |
o Fom——_—— o — o —— +
| California | CA | 1850-09-09 | 29760021 |
Fmm Fom oo o +
7.6.4 See Also

For more information about joins, see Chapter 12.

7.7 Controlling String Case Sensitivity for MIN() and MAX()
7.7.1 Problem

MIN(C) and MAX() select strings in case sensitive fashion when you don't want them to, or vice versa.

7.7.2 Solution

Alter the case sensitivity of the strings.

7.7.3 Discussion

When applied to string values, MIN() and MAX() produce results determined according to lexical sorting rules.

One factor in string sorting is case sensitivity, so MIN() and MAX() are affected by that as well. In Chapter 6, we
used a textblob_val table containing two columns of apparently identical values:

mysql> SELECT tstr, bstr FROM textblob_val;

However, although the values look the same, they don't behave the same. bstr is a BLOB column and is case
sensitive. tstr, a TEXT column, is not. As a result, MIN(C) and MAX() will not necessarily produce the same
results for the two columns:

mysqgl> SELECT MIN(tstr), MIN(bstr) FROM textblob_val;

o o - +
| MINCtstr) | MIN(bstr) |
Fom o +
| aaa | AAA |
Fom e Fom e +

To make tstr case sensitive, use BINARY:

mysql> SELECT MIN(BINARY tstr) FROM textblob val;

S +
| MIN(BINARY tstr) |
e +
| AAA I
e +

To make bstr not case sensitive, you can convert the values to a given lettercase:

mysqgl> SELECT MIN(LOWER(bstr)) FROM textblob_val;

o +
| MINC(LOWER(bstr)) |
e +
| aaa |
e +

Unfortunately, doing so also changes the displayed value. If that's an issue, use this technique instead (and note
that it may yield a somewhat different result):

mysql> SELECT @min = MIN(LOWER(bstr)) FROM textblob val;
mysqgl> SELECT bstr FROM textblob_val WHERE LOWER(bstr) = @min;

7.8 Dividing a Summary into Subgroups

7.8.1 Problem

You want to calculate a summary for each subgroup of a set of rows, not an overall summary value.
7.8.2 Solution

Use a GROUP BY clause to arrange rows into groups.

7.8.3 Discussion

The summary queries shown so far calculate summary values over all rows in the result set. For example, the
following query determines the number of daily driving records in the driver_log table, and thus the total number
of days that drivers were on the road:

mysql> SELECT COUNT(*) FROM driver_log;

o +
| COUNT(®) |
o +
| 10 |
Fom e +

But sometimes it's desirable to break a set of rows into subgroups and summarize each group. This is done by
using aggregate functions in conjunction with a GROUP BY clause. To determine the number of days driven by each
driver, group the rows by driver name, count how many rows there are for each name, and display the names with
the counts:

mysql> SELECT name, COUNT(name) FROM driver_log GROUP BY name;

S o +
| name | COUNT(name) |
o —_—— o +
| Ben | 31
| Henry | 5]
| Suzi | 2]
R . +

That query summarizes the same column used for grouping (name), but that's not always necessary. Suppose you
want a quick characterization of the driver_1log table, showing for each person listed in it the total number of
miles driven and the average number of miles per day. In this case, you still use the name column to place the rows
in groups, but the summary functions operate on the miles values:

mysqgl> SELECT name,
-> SUM(milles) AS "total miles”,
-> AVG(miles) AS "miles per day*
-> FROM driver_log GROUP BY name;

o o o +
| name | total miles | miles per day |
o —_—— o o +
Ben	362	120.6667
Henry	911	182.2000
Suzi	893	446 .5000
o o o +

Use as many grouping columns as necessary to achieve as fine-grained a summary as you require. The following
query produces a coarse summary showing how many messages were sent by each message sender listed in the
mai I table:

mysql> SELECT srcuser, COUNT(*) FROM mail
-> GROUP BY srcuser;

o o +
| srcuser | COUNT(*) |

Fom e Fom e +
| barb | 31
| gene | 6 |
| phil | 5
| tricia | 2]
Fom e Fom e +

To be more specific and find out how many messages each sender sent from each host, use two grouping columns.
This produces a result with nested groups (groups within groups):

mysql> SELECT srcuser, srchost, COUNT(*) FROM mail
-> GROUP BY srcuser, srchost;

Fom——_—— Fom——_—— — —— o +
| srcuser | srchost | COUNT(*) |
Fom e —_——_—— Fom e ——_—— Fem e —— — +
| barb | saturn | 2]
| barb | venus | 1]
| gene | mars | 2]
| gene | saturn | 2]
| gene | venus | 2]
| phil | mars | 31
| phil | venus | 2]
| tricia | mars | 1]
| tricia | saturn | 1]
Fom e —_——_—— Fom e ——_—— Fem e —_—— +

Sidebar 1. Getting Distinct Values Without
Using DISTINCT

If you use GROUP BY without selecting the value of any aggregate functions, you achieve the same effect
as DISTINCT without using DISTINCT explicitly:

mysqgl> SELECT name FROM driver_log GROUP BY name;

Normally with this kind of query you'd select a summary value (for example, by invoking
COUNT(name) to count the instances of each name), but it's legal not to. The net effect is to produce a
list of the unique grouped values. | prefer to use DISTINCT, because it makes the point of the query
more obvious. (Internally, MySQL actually maps the DISTINCT form of the query onto the GROUP BY
form.)

The preceding examples in this section have used COUNT(), SUM() and AVG() for per-group summaries. You
can use MIN() or MAX(), too. With a GROUP BY clause, they will tell you the smallest or largest value per group.
The following query groups mai I table rows by message sender, displaying for each one the size of the largest
message sent and the date of the most recent message:

mysql> SELECT srcuser, MAX(size), MAX(t) FROM mail GROUP BY srcuser;

Fom e o Ry +
| srcuser | MAX(size) | MAX(t) |
Fommmemmem Fom e oo +
barb	98151	2001-05-14 14:42:21
gene	998532	2001-05-19 22:21:51
phil	10294	2001-05-17 12:49:23
tricia	2394482	2001-05-14 17:03:01
Fommmemmem Fom e oo +

You can group by multiple columns and display a maximum for each combination of values in those columns. This
query finds the size of the largest message sent between each pair of sender and recipient values listed in the mai |
table:

mysql> SELECT srcuser, dstuser, MAX(size) FROM mail GROUP BY srcuser, dstuser;

o o S +
| srcuser | dstuser | MAX(size) |
Fom e — Fom e — o - +
barb	barb	98151
barb	tricia	58274
gene	barb	2291
gene	gene	23992
gene	tricia	998532
phil	barb	10294
phil	phil	1048
phil	tricia	5781
tricia	gene	194925
tricia	phil	2394482
Fomm——— Fom o - +

When using aggregate functions to produce per-group summary values, watch out for the following trap. Suppose
you want to know the longest trip per driver in the driver_log table. That's produced by this query:

mysql> SELECT name, MAX(miles) AS "longest trip”
-> FROM driver_log GROUP BY name;

| name | longest trip |
o —_—— o +
Ben	152
Henry	300
Suzi	502
B Ry +

But what if you also want to show the date on which each driver's longest trip occurred? Can you just add
trav_date to the output column list? Sorry, that won't work:

mysql> SELECT name, trav_date, MAX(miles) AS "longest trip”
-> FROM driver_log GROUP BY name;

o ——— o o +
| name | trav_date | longest trip |
Fomm TR - T +
Ben	2001-11-30	152
Henry	2001-11-29	300
Suzi	2001-11-29	502
o ——— o o +

The query does produce a result, but if you compare it to the full table (shown below), you'll see that although the
dates for Ben and Henry are correct, the date for Suzi is not:

S R R R +
| rec_id | name | trav_date | miles |

Fom——_—— - o —_—— o o ——_—— +

| 1] Ben | 2001-11-30 | 152 | <-- Ben"s longest trip

| 2 | Suzi | 2001-11-29 | 391 |

| 3 | Henry | 2001-11-29 | 300 | <-- Henry"s longest trip
| 4 | Henry | 2001-11-27 | 96 |

| 5] Ben | 2001-11-29 | 131 |

| 6 | Henry | 2001-11-26 | 115 |

| 7 | Suzi | 2001-12-02 | 502 | <-- Suzi"s longest trip
| 8 | Henry | 2001-12-01 | 197 |

| 9 | Ben | 2001-12-02 | 79 |

| 10 | Henry | 2001-11-30 | 203 |

Fom Fom o Fom +

So what's going on? Why does the summary query produce incorrect results? This happens because when you
include a GROUP BY clause in a query, the only values you can select are the grouped columns or the summary
values calculated from the groups. If you display additional columns, they're not tied to the grouped columns and
the values displayed for them are indeterminate. (For the query just shown, it appears that MySQL may simply be
picking the first date for each driver, whether or not it matches the driver's maximum mileage value.)

The general solution to the problem of displaying contents of rows associated with minimum or maximum group
values involves a join. The technique is described in Chapter 12. If you don't want to read ahead, or you don't want
to use another table, consider using the MAX-CONCAT trick described earlier. It produces the correct result,
although the query is fairly ugly:

mysql> SELECT name,
-> SUBSTRING(MAX(CONCAT(LPAD(miles,3," "), trav_date)),4) AS date,
-> LEFT(MAX(CONCAT(LPAD(miles,3," "), trav_date)),3) AS "longest trip"
-> FROM driver_log GROUP BY name;

Ben	2001-11-30	152
Henry	2001-11-29	300
Suzi	2001-12-02	502
o —— o o +

7.9 Summaries and NULL Values
7.9.1 Problem

You're summarizing a set of values that may include NULL values and you need to know how to interpret the
results.

7.9.2 Solution

Understand how aggregate functions handle NULL values.

7.9.3 Discussion

Most aggregate functions ignore NULL values. Suppose you have a table expt that records experimental results for

subjects who are to be given four tests each and that lists the test score as NULL for those tests that have not yet
been administered:

mysql> SELECT subject, test, score FROM expt ORDER BY subject, test;

Fom e — o —— o ——_—— +
| subject | test | score |
TR Fom—— Fomm——— +
Jane	A	47
Jane	B	50
Jane	C	NULL
Jane	D	NULL
Marvin	A	52
Marvin	B	45
Marvin	C	53
Marvin	D	NULL
Fom e Fom——_—— o ——_—— +

By using a GROUP BY clause to arrange the rows by subject name, the number of tests taken by each subject, as well
as the total, average, lowest, and highest score can be calculated like this,

mysql> SELECT subject,
-> COUNT(score) AS n,
-> SUM(score) AS total,
-> AVG(score) AS average,
-> MIN(score) AS lowest,
-> MAX(score) AS highest
-> FROM expt GROUP BY subject;

o ot o o T +
| subject | n | total | average | lowest | highest |
Fom e — o — —— o — o —— - o — - +
| Jane | 2 | 97 | 48.5000 | 47 | 50 |
| Marvin | 3 | 150 | 50.0000 | 45 | 53 |
o ot o o T +

You can see from results in the column labeled n (number of tests) that the query counts only five values. Why?
Because the values in that column correspond to the number of non-NULL test scores for each subject. The other
summary columns display results that are calculated only from the non-NULL scores as well.

It makes a lot of sense for aggregate functions to ignore NULL values. If they followed the usual SQL arithmetic
rules, adding NULL to any other value would produce a NULL result. That would make aggregate functions really
difficult to use because you'd have to filter out NULL values yourself every time you performed a summary to avoid
getting a NULL result. Ugh. By ignoring NULL values, aggregate functions become a lot more convenient.

However, be aware that even though aggregate functions may ignore NULL values, some of them can still produce
NULL as a result. This happens if there's nothing to summarize. The following query is the same as the previous
one, with one small difference. It selects only NULL test scores, so there's nothing for the aggregate functions to
operate on:

mysql> SELECT subject,
-> COUNT(score) AS n,
-> SUM(score) AS total,
-> AVG(score) AS average,
-> MIN(score) AS lowest,
-> MAX(score) AS highest
-> FROM expt WHERE score IS NULL GROUP BY subject;

o T o —— o —_—— o —— +
| subject | n | total | average | lowest | highest |
Fom e — o — —— o — o —— - o — - +
| Jane | O] 0 | NULL | NULL | NULL |
| Marvin | O | 0 | NULL | NULL | NULL |
o T o —— o —_—— o —— +

Even under these circumstances, the summary functions still return the most sensible value. The number of scores
and total score per subject each are zero and are reported that way. AVG(), on the other hand, returns NULL. An
average is a ratio, calculated as a sum of values divided by the number of values. When there aren't any values to
summarize, the ratio is 070, which is undefined. NULL is therefore the most reasonable result for AVG() to return.
Similarly, MINC) and MAX() have nothing to work with, so they return NULL. If you don't want these functions to
produce NULL in the query output, use IFNULL() to map their results appropriately:

mysqgl> SELECT subject,
-> COUNT(score) AS n,
SUM(score) AS total,
-> IFNULL(AVG(score),0) AS average,
-> IFNULL(MIN(score), "Unknown®) AS lowest,
-> IFNULL(MAX(score), "Unknown®) AS highest
-> FROM expt WHERE score 1S NULL GROUP BY subject;

\%

Fom e — o — - o — o o — +
| subject | n | total | average | lowest | highest |
TR T Fomm - T - T - +
| Jane | O | 0 | 0 | Unknown | Unknown |
| Marvin | 0 | 0| 0 | Unknown | Unknown |
Fom e — o — - o — o o — +

COUNT() is somewhat different with regard to NULL values than the other aggregate functions. Like other
aggregate functions, COUNT (expr) counts only non-NULL values, but COUNT(*) counts rows, regardless of their
content. You can see the difference between the forms of COUNT() like this:

mysql> SELECT COUNT(*), COUNT(score) FROM expt;

o e +
| COUNT(*) | COUNT(score) |
Fom e —_—— — Fom e +
I 8 | 51
o e +

This tells us that there are eight rows in the expt table but that only five of them have the score value filled in.
The different forms of COUNT() can be very useful for counting missing values; just take the difference:

mysql> SELECT COUNT(*) - COUNT(score) AS missing FROM expt;

TR +
| missing |
Fom e — +
I 31
TR +

Missing and non-missing counts can be determined for subgroups as well. The following query does so for each
subject. This provides a quick way to assess the extent to which the experiment has been completed:

mysqgl> SELECT subject,
-> COUNT(*) AS total,
-> COUNT(score) AS "non-missing”,
-> COUNT(*) - COUNT(score) AS missing
-> FROM expt GROUP BY subject;

Fommmemeem S T RS Fommmmem +
| subject | total | non-missing | missing |
Fom e —_——— Fom—— Fom e - Fom e —_——_ — +
| Jane | 4 | 2] 2]
| Marvin | 4 | 31 1]
Fommmemmem S — TS Fommmmem +

7.10 Selecting Only Groups with Certain Characteristics

7.10.1 Problem

You want to calculate group summaries, but display the results only for those groups that match certain criteria.
7.10.2 Solution

Use a HAVING clause.

7.10.3 Discussion

You're familiar with the use of WHERE to specify conditions that individual records must satisfy to be selected by a
query. It's natural, therefore, to use WHERE to write conditions that involve summary values. The only trouble is that

it doesn't work. If you want to identify drivers in the driver_log table who drove more than three days, you'd
probably first think to write the query like this:

mysqgl> SELECT COUNT(*), name
-> FROM driver_log
-> WHERE COUNT(*) > 3
-> GROUP BY name;
ERROR 1111 at line 1: Invalid use of group function

The problem here is that WHERE specifies the initial constraints that determine which rows to select, but the value of
COUNT() can be determined only after the rows have been selected. The solution is to put the COUNT()
expression in a HAVING clause instead. HAVING is analogous to WHERE, but it applies to group characteristics rather
than to single records. That is, HAVING operates on the already-selected-and-grouped set of rows, applying
additional constraints based on aggregate function results that aren't known during the initial selection process. The
preceding query therefore should be written like this:

mysqgl> SELECT COUNT(*), name
-> FROM driver_log
-> GROUP BY name
-> HAVING COUNT(*) > 3;

o Fom—— +
| COUNT(*) | name |
o o ——_—— +
| 5 | Henry |
Fom e Fomm——— +

When you use HAVING, you can still include a WHERE clause—but only to select rows, not to test summary values.

HAVING can refer to aliases, so the previous query can be rewritten like this:

mysql> SELECT COUNT(*) AS count, name
-> FROM driver_log
-> GROUP BY name
-> HAVING count > 3;

Fomm—— o —— +
| count | name |
o o +
| 5 | Henry |
o ——_—— o ——_—— +

7.11 Determining Whether Values are Unique
7.11.1 Problem

You want to know whether table values are unique.

7.11.2 Solution

Use HAVING in conjunction with COUNT().

7.11.3 Discussion

You can use HAVING to find unique values in situations to which DISTINCT does not apply. DISTINCT eliminates
duplicates, but doesn't show which values actually were duplicated in the original data. HAVING can tell you which
values were unique or non-unique.

The following queries show the days on which only one driver was active, and the days on which more than one
driver was active. They're based on using HAVING and COUNT() to determine which trav_date values are unique
or non-unique:

mysqgl> SELECT trav_date, COUNT(trav_date)
-> FROM driver_log
-> GROUP BY trav_date
-> HAVING COUNT(trav_date) = 1;

o Ry +
| trav_date | COUNT(trav_date) |
o Ny +
| 2001-11-26 | 1]
| 2001-11-27 | 1]
| 2001-12-01 | 1]
o Sy +

mysql> SELECT trav_date, COUNT(trav_date)
-> FROM driver_log
-> GROUP BY trav_date
-> HAVING COUNT(trav_date) > 1;

o Ry +
| trav_date | COUNT(trav_date) |
o o +
| 2001-11-29 | 3]
| 2001-11-30 | 2]
| 2001-12-02 | 2 |
o Ry +

This technique works for combinations of values, too. For example, to find message sender/recipient pairs between
whom only one message was sent, look for combinations that occur only once in the mai I table:

mysqgl> SELECT srcuser, dstuser
-> FROM mail
-> GROUP BY srcuser, dstuser
-> HAVING COUNT(*) = 1;
o o +
| srcuser | dstuser |
Fom e — Fom e — +
| barb |
| tricia |
| barb |
tricia | gene |
| phil I
+

Note that this query doesn't print the count. The first two examples did so, to show that the counts were being used
properly, but you can use a count in a HAVING clause without including it in the output column list.

7.12 Grouping by Expression Results

7.12.1 Problem

You want to group rows into subgroups based on values calculated from an expression.
7.12.2 Solution

Put the expression in the GROUP BY clause. For older versions of MySQL that don't support GROUP BY expressions,
use a workaround.

7.12.3 Discussion

GROUP BY shares the property with ORDER BY that as of MySQL 3.23.2 it can refer to expressions. This means you
can use calculations as the basis for grouping. For example, to find the distribution of the length of state names,
group by LENGTH(name):

mysql> SELECT LENGTH(name), COUNT(*)
-> FROM states GROUP BY LENGTH(name);

Fom - S +
| LENGTH(name) | COUNT(*) |
o o o +
I 41 3 |
I 5| 31
I 6 | 5 |
I 7| 8 |
I 8 | 12 |
I 9 | 4 1
I 10 | 4
I 11] 2 |
I 12] 4
I 13 | 3|
I 14 | 2 |
o o +

Prior to MySQL 3.23.2, you cannot use expressions in GROUP BY clauses, so the preceding query would fail. In
Recipe 6.4, workarounds for this problem were given with regard to ORDER BY, and the same methods apply to
GROUP BY. One workaround is to give the expression an alias in the output column list and refer to the alias in the
GROUP BY clause:

mysqgl> SELECT LENGTH(name) AS len, COUNT(*)
-> FROM states GROUP BY len;

QOO ~NO UM

=

Another is to write the GROUP BY clause to refer to the output column position:

mysqgl> SELECT LENGTH(name), COUNT(*)
-> FROM states GROUP BY 1;
o o +

| LENGTH(nhame)

Of course, these alternative ways of writing the query work in MySQL 3.23.2 and up as well—and you may find
them more readable.

You can group by multiple expressions if you like. To find days of the year on which more than one state joined
the Union, group by statehood month and day, then use HAVING and COUNT() to find the non-unique
combinations:

mysql> SELECT MONTHNAME(statehood), DAYOFMONTH(statehood), COUNT(*)
-> FROM states GROUP BY 1, 2 HAVING COUNT(*) > 1;

e o T —— +
| MONTHNAME(statehood) | DAYOFMONTH(statehood) | COUNT(*) |
Ry e o —— +
| February | 14 | 2]
| June | 1] 21
| March | 1] 2]
| May | 29 | 21
| November | 2] 2]
e S o +

7.13 Categorizing Non-Categorical Data
7.13.1 Problem

You need to perform a summary on a set of values that are mostly unique and do not categorize well.

7.13.2 Solution
Use an expression to group the values into categories.

7.13.3 Discussion

One important application for grouping by expression results is to provide categories for values that are not
particularly categorical. This is useful because GROUP BY works best for columns with repetitive values. For
example, you might attempt to perform a population analysis by grouping records in the states table using values
in the pop column. As it happens, that would not work very well, due to the high number of distinct values in the
column. In fact, they're all distinct, as the following query shows:

mysql> SELECT COUNT(pop), COUNT(DISTINCT pop) FROM states;

o S +
| COUNT(pop) | COUNT(DISTINCT pop) |
e e +
I 50 | 50 |
o o +

In situations like this, where values do not group nicely into a small number of sets, you can use a transformation
that forces them into categories. First, determine the population range:

mysqgl> SELECT MIN(pop), MAX(pop) FROM states;

Fom e ——— Fmme e ——— +
| MINCpop) | MAX(pop) |
Fmmm e Feme e ——_——— +
| 453588 | 29760021 |
- - +

We can see from that result that if we divide the pop values by five million, they'll group into six categories—a
reasonable number. (The category ranges will be 1 to 5,000,000; 5,000,001 to 10,000,000; and so forth.) To put
each population value in the proper category, divide by five million and use the integer result:

mysqgl> SELECT FLOOR(pop/5000000) AS “population (millions)",
-> COUNT(*) AS "number of states”
-> FROM states GROUP BY 1;
e +

| population (millions) number of states |

+
I

+
I
I
I
I
I

+

Hm. That's not quite right. The expression groups the population values into a small number of categories, all right,
but doesn't report the category values properly. Let's try multiplying the FLOOR() results by five:

mysql> SELECT FLOOR(pop/5000000)*5 AS "population (millions)",
-> COUNT(*) AS "number of states”
-> FROM states GROUP BY 1;

Ry Ry +
| population (millions) | number of states |
Ny Ry +
I 0| 35 |
I S| 8 |
I 10 | 4
I 15 | 2|
I 25 | 1]
e o +

Hey, that still isn't correct! The maximum state population was 29,760,021, which should go into a category for 30
million, not one for 25 million. The problem is that the category-producing expression groups values toward the
lower bound of each category. To group values toward the upper bound instead, use the following little trick. For
categories of size n, you can place a value x into the proper category using the following expression:

FLOOR((x+(n-1))/n)

So the final form of our query looks like this:

mysqgl> SELECT FLOOR((pop+4999999)/5000000)*5 AS “population (millions)",
-> COUNT(*) AS "number of states”
-> FROM states GROUP BY 1;
Ry +
| population (millions) number of states |

H
o
o ————— o —

The result shows clearly that the majority of U.S. states have a population of five million or less.

This technique works for all kinds of numeric values. For example, you can group mai I table records into
categories of 100,000 bytes as follows:

mysql> SELECT FLOOR((size+99999)/100000) AS "size (100KB)",
-> COUNT(*) AS "number of messages®
-> FROM mail GROUP BY 1;

o e e +

| size (100KB) number of messages |

+
|
+
1] 1
|
|
|
+

In some instances, it may be more appropriate to categorize groups on a logarithmic scale. For example, the state
population values can be treated that way as follows:

mysqgl> SELECT FLOOR(LOG10(pop)) AS "loglO(population)”,
-> COUNT(*) AS "number of states®
-> FROM states GROUP BY 1;

Ty, e +
| ToglO(population) | number of states |
o o +
I S| 71
I 6 1 36 |
I 71 71
o o +

Sidebar 2. How Repetitive Is a Set of
Values?

To assess how much repetition is present in a set of values, use the ratio of COUNT(DISTINCT) and
COUNT(). If all values are unigue, both counts will be the same and the ratio will be 1. This is the case
for the t values in the mai I table and the pop values in the states table:

mysql> SELECT COUNT(DISTINCT t) / COUNT(t) FROM mail;

e +
| COUNT(DISTINCT t) / COUNT(Y) |
T +

| 1.00 |

Ty oy Ry Ry Sy Sy S +

mysqgl> SELECT COUNT(DISTINCT pop) /7 COUNT(pop) FROM states;
e +

| COUNT(DISTINCT pop) 7/ COUNT(pop) |

e e +

| 1.00 |
e +

For a more repetitive set of values, COUNT(DISTINCT) will be less than COUNT() and the ratio will be
smaller:

mysqgl> SELECT COUNT(DISTINCT name) / COUNT(name) FROM driver_log;

e +
| COUNT(DISTINCT name) / COUNT(name) |
e +
| 0.30 |
e +

What's the practical use for this ratio? A result close to zero indicates a high degree of repetition, which
means the values will group into a small number of categories naturally. A result of 1 or close to it
indicates many unique values, with the consequence that GROUP BY won't be very efficient for grouping
the values into categories. (That is, there will be a lot of categories, relative to the number of values.)
This tells you that to generate a summary, you'll probably find it necessary to impose an artificial

categorization on the values, using the techniques described in this section.

7.14 Controlling Summary Display Order

7.14.1 Problem

You want to sort the result of a summary query.

7.14.2 Solution

Use an ORDER BY clause—if GROUP BY doesn't produce the desired sort order.

7.14.3 Discussion

In MySQL, GROUP BY not only groups, it sorts. Thus there is often no need for an ORDER BY clause in a summary
query. But you can still use ORDER BY if you want a sort order other than the one that GROUP BY produces by default.
chc:; zﬁaerrr;;?le, to determine the number of days driven and total miles for each person in the driver_log table, run

mysqgl> SELECT name, COUNT(*) AS days, SUM(miles) AS mileage
-> FROM driver_log GROUP BY name;

o —— o —— o +
| name | days | mi leage |
o o Ry +
Ben	31 362
Henry	5] 911
Suzi	2] 893
o o Ry +

But that sorts by the names. If you want to sort drivers according to who drove the most days or miles, add the
appropriate ORDER BY clause:

mysqgl> SELECT name, COUNT(*) AS days, SUM(miles) AS mileage
-> FROM driver_log GROUP BY name
-> ORDER BY days DESC;

o Fom Fom e +
| name | days | mileage |
o o — o +
Henry	5] 911
Ben	31 362
Suzi	2] 893
o —— T +

mysqgl> SELECT name, COUNT(*) AS days, SUM(miles) AS mileage
-> FROM driver_log GROUP BY name
-> ORDER BY mileage DESC;

o ——— Fom Fom e +
| name | days | mileage |
o o — o +
Henry	5] 911
Suzi	2] 893
Ben	31 362

It's necessary to use an alias (or a column position number) in the ORDER BY clause to refer to the summary values.
This is true even for MySQL 3.23.2 and up, which normally allows expressions in an ORDER BY clause; those
expressions must refer to individual values, not values computed from a set.

Sometimes you can reorder a summary without an ORDER BY clause by choosing an appropriate GROUP BY
expression. For example, if you count how many